

TEST REPORT FOR SEPTEMBER 2020 HCL EMISSIONS PERFORMANCE TESTING AT THE DESERT VIEW POWER, MECCA PLANT

Prepared For:

Desert View Power

62-300 Gene Welmas Drive Mecca, California 92254-0758

For Submittal To:

South Coast Air Quality Management District

21865 Copley Drive Diamond Bar, California 91765-4178

Prepared By:

Montrose Air Quality Services, LLC

1631 E. St. Andrew Pl. Santa Ana, California 92705 (714) 279-6777

Dave Wonderly

Test Date: September 9-10, 2020

Production Date: October 26, 2020

Report Number: W002AS-678786-RT-1697

CONFIDENTIALITY STATEMENT

Except as otherwise required by law or regulation, this information contained in this communication is intended exclusively for the individual or entity to which it is addressed. This communication may contain information that is proprietary, privileged or confidential or otherwise legally exempt from disclosure. If you are not the named addressee, you are not authorized to read, print, retain, copy, or disseminate this message or any part of it.

REVIEW AND CERTIFICATION

All work, calculations, and other activities and tasks performed and presented in this document were carried out by me or under my direction and supervision. I hereby certify that, to the best of my knowledge, Montrose operated in conformance with the requirements of the Montrose Quality Management System and ASTM D7036-04 during this test project.

Signature:	David Worl	_ Date:	10/26/2020
Name: _	Dave Wonderly	_ Title:	Client Project Manager
appropriate wr the presented	itten materials contained herei	n. I herel , and cor	alculations, results, conclusions, and othe by certify that, to the best of my knowledge nforms to the requirements of the Montrose
Signature:	Michael Manja	_ Date:	10/26/2020
Name [.]	Michael Chowsanitphon	Title:	Reporting Manager

TABLE OF CONTENTS

SEC	CTION		<u>PAGE</u>
1.0	INTROD	DUCTION	6
2.0	UNIT DE	ESCRIPTION	7
	2.1 TE	ST CONDITIONS	8
	2.2 SA	MPLE LOCATIONS	8
3.0	TEST D	ESCRIPTIONS	10
	3.1 O ₂	, AND CO ₂	11
	3.2 HY	DROGEN CHLORIDE MEASUREMENTS	12
	3.3 VE	LOCITY AND MOISTURE	12
	3.4 FU	JEL ANALYSIS	12
4.0	TEST R	ESULTS	13
	4.1 UN	NIT 1 PERFORMANCE TEST RESULTS	13
		NIT 2 PERFORMANCE TEST RESULTS	
	4.3 FU	JEL ANALYSIS	14
LIS	T OF APP	PENDICES	
Α	TEST D	ATA	15
	A.1 Un	nit 1 Data	16
	A.1.1	Unit 1 Sample Location	17
	A.1.2	Unit 1 CEM Data	19
	A.1.3		
	A.1.4	, .	
	A.2 Un	nit 2 Data	
	A.2.1	Unit 2 Sample Location	
	A.2.2		
	A.2.3		
	A.2.4	, , , , , , , , , , , , , , , , , , , ,	
		boratory Reports	
	A.3.1	Hydrogen Chloride Laboratory Data	
	A.3.2	,	
	A.3.3	,	
_		Ilibration Data	
В		LATIONS	
		eneral Emissions Calculations	
		nit 1 Calculations	
	B.2.1	Unit 1 Gaseous Calculations Unit 1 Hydrogen Chloride Calculations	
	D.Z.Z	Unii i dvaroden Chionde Calculations	

TABLE OF CONTENTS (CONTINUED)

SEC	<u>CTION</u>	<u>PAGE</u>
	B.3 Unit 2 Calculations	128
	B.3.1 Unit 2 Gaseous Calculations	129
	B.3.2 Unit 2 Hydrogen Chloride Calculations	133
	B.4 MMBtu/hr Calculations	136
С	QUALITY ASSURANCE	140
	C.1 Quality Assurance Program Summary	141
	C.2 CARB, SCAQMD, and STAC Certifications	147
	C.3 Individual QI Certifications	152
D	TEST PLAN	156
LIS	T OF TABLES	
1-1	SUMMARY OF EMISSIONS RESULTS UNIT 1	6
1-2	SUMMARY OF EMISSIONS RESULTS UNIT 2	6
2-1	CONTINUOUS EMISSION MONITOR SYSTEM UNITS 1 AND 2	7
2-2	AVERAGE DAILY UNIT DATA	8
3-1	TEST MATRIX PER UNIT	10
3-2	TEST SCHEDULE UNIT 1	10
3-3	TEST SCHEDULE UNIT 2	10
4-1	HYDROCHLORIC ACID TEST RESULTS UNIT 1	13
4-2	HYDROCHLORIC ACID TEST RESULTS UNIT 2	14
LIS	T OF FIGURES	
2-1	SCHEMATIC OF THE DESERT VIEW POWER SAMPLE LOCATION	a

1.0 INTRODUCTION

Montrose Air Quality Services, LLC (MAQS) was contracted by Desert View Power, to conduct hydrogen chloride (HCl) performance emissions testing at the Desert View Power Project located in Mecca, California. Testing was conducted on September 9-10, 2020. The MAQS test team consisted of Dave Wonderly, David Hoang, and Patrick Whitman. Dave Wonderly was the on-site Qualified Individual for MAQS. Kevin Lawrence of Desert View Power, coordinated plant operations during the test program. Testing was performed according to the test protocol (MAQS Document Number: W002AS-678786-PP-86) submitted to Desert View Power on January 13, 2020. The South Coast Air Quality Management District (SCAQMD) was notified of the test date but did not send a representative.

The emissions tests included measurements on Unit 1 and Unit 2 for hydrogen chloride (HCl). Exhaust flow rate and moisture measurements were performed in conjunction with the testing.

The Desert View Power Facility met the HCL emissions limits required by the U.S. Environmental Protection Agency 40 CFR Part 63 Subpart DDDDD, the Boiler MACT and the U.S. Environmental Protection Agency Operating Permit NSR 4-4-11;SE 87-01 including amendments through August 14, 2003: 7th Amendment Title V permit to operate CB-OP 99-01 dated 8/1/2000.

Tables 1-1 and 1-2 summarize the results of the HCL emissions tests for Unit 1 and Unit 2.

TABLE 1-1 SUMMARY OF EMISSIONS RESULTS UNIT 1 DESERT VIEW POWER SETEMBER 10, 2020

Parameter/Units	Average Emission Results	Permit Limit	Comment
Hydrochloric Acid			
mg/dscm	17.92		
lb/hr (as HCl)	6.07		
lb/MMBtu	0.016	0.022	PASS

TABLE 1-2 SUMMARY OF EMISSIONS RESULTS UNIT 2 DESERT VIEW POWER SEPTEMBER 9, 2020

Parameter/Units	Average Emission Results	Permit Limit	Comment
Hydrochloric Acid			
mg/dscm	23.99		
lb/hr (as HCl)	8.25		
lb/MMBtu	0.022	0.022	PASS

2.0 UNIT DESCRIPTION

The Desert View Power plant consists of two 297 MMBtu/hr, circulating bed, biomass-fired boilers. The combined units are designed to produce 47 MW of net electrical output. Each unit is equipped with the following pollution control systems:

- An ammonia injection system for control of NO_x emissions;
- Cyclonic mixing of injected ammonia with flue gas to provide for a minimum amount of ammonia slip (emission);
- A limestone injection system to limit emissions of SO₂;
- A reverse air baghouse to control opacity and emissions of sulfates and particulate to very low levels;
- A hydrated lime injection system to limit emissions of HCL.

The plant CEMS system for each unit includes measurements of NO_x, O₂, O₂ wet, CO₂, CO, SO₂, flow and opacity. It is an extractive system with a heated line extending from the probe to the CEMS unit. Table 2-1 presents the current CEMS configuration.

TABLE 2-1
CONTINUOUS EMISSION MONITOR SYSTEM
UNITS 1 AND 2
DESERT VIEW POWER

Species	Manufacturer	Unit 1, Model/Serial Number	Unit 2, Model/Serial Number	Range
NO _x	CAI	ZRE/A3F4992T	ZRE/A3F4993T	100 and 500 ppm
O ₂ Dry	CAI	ZRE/A3F4992T	ZRE/A3F4993T	25%
O ₂ Wet	Thermox	WDG	WDG	25%
CO ₂	CAI	ZRE/A3F4992T	ZRE/A3F4993T	20%
СО	CAI	ZRE/A3F4992T	ZRE/A3F4993T	100 and 500 ppm
SO ₂	CAI	ZRE/A3F4992T	ZRE/A3F4993T	50 and 500 ppm
Flow	Dietrick Standard/Rosemont	0260938		Msdcfh
Opacity	Monitor Labs	Lighthawk 560	Lighthawk 560	100%
NO ₂ Convertor	CAI	ZDL04001	ZDL04001	

2.1 TEST CONDITIONS

The tests were conducted at or near maximum steady state unit load conditions. Limestone injection rate, fuel combustion rate, ammonia injection rate, ash handling operations, excess air level, combustion air distribution, and combustor temperature were set to maintain stable unit operation. Pertinent operating conditions were recorded by Desert View Power personnel during the tests as presented in Table 2-2.

TABLE 2-2 AVERAGE DAILY UNIT DATA DESERT VIEW POWER SEPTEMBER 9 AND 10, 2020

Date	Unit No.	Steam Flow kpph	Boiler Input MMBtu/hr
9/10/2020	1	208	383
9/9/2020	2	208	372

2.2 SAMPLE LOCATIONS

Samples were collected at the stack breaching ducts to the stack. Desert View Power previously conducted three dimensional flow testing and stratification testing on the baghouse exhaust ducts on each unit. This testing was performed in accordance to SCAQMD Chapter X, Section 1 and 13 and was presented in the report titled "Stack Gas Stratification and Absence of Flow Disturbance Testing at Desert View Power" (R106E622.T) submitted to SCAQMD in October of 1994. A copy of the sample location certification report can be found in the test plan in Appendix E of this report. The sample locations meet the requirements. All testing for both Unit 1 and 2 was conducted at the sample location presented in Figure 2-1.

FIGURE 2-1
SCHEMATIC OF THE DESERT VIEW POWER, SAMPLE LOCATION

3.0 TEST DESCRIPTIONS

The test procedures that were used are listed in Table 3-1. Tables 3-2 and 3-3 present the test schedule.

TABLE 3-1
TEST MATRIX PER UNIT
DESERT VIEW POWER

Parameter	No. of Tests	Measurement Principle	Reference Method	Duration per Test
O_2	3	Paramagnetic	EPA 3A	120 minutes
HCL	3	Ion Chromatography	EPA 26A	120 minutes, minimum of 2 DSCM of sample volume
Stack Gas Flow Rate		S-Type Pitot Traverse	EPA 2	
Moisture		Condensation/Gravimetric	EPA 4	

TABLE 3-2
TEST SCHEDULE UNIT 1
DESERT VIEW POWER

Test No.	Date	Time	Test Parameter
1-HCL-U1	9/10/2020	553/758	HCL
2-HCL-U1	9/10/2020	822/1027	HCL
3-HCL-U1	9/10/2020	1230/1435	HCL

TABLE 3-3
TEST SCHEDULE UNIT 2
DESERT VIEW POWER

Test No.	Date	Time	Test Parameter
1-HCL-U2	9/9/2020	810/1016	HCL
2-HCL-U2	9/9/2020	1030/1235	HCL
3-HCL-U2	9/9/2020	1247/1452	HCL
3-1 IOL-02	9/9/2020	1247/1432	TICL

3.1 O₂, AND CO₂

O₂ and CO₂ were measured according to EPA reference methods using MAQS' continuous emissions monitoring system (CEM). O₂ and CO₂ concentrations were determined using MAQS' mobile emission measurement laboratory. The laboratory is housed in a truck outfitted to provide a clean, quiet, environmentally controlled base for the testing operations. The laboratory has lighting, electrical distribution, air conditioning and heating to support the test instruments and provide for optimal test performance.

Concentrations of these gaseous species were measured using an extractive sampling system consisting of a stainless steel probe to minimize reactions, a heat traced Teflon sample line connected to a thermo-electrically cooled sample dryer. Following the dryer, the sample is drawn into a Teflon lined pump where it is pressurized and then filtered for delivery to the gas analysis portion of the system. Gaseous samples were collected at a single point. Three 60-minute compliance tests were performed.

Oxygen concentration was determined using an CAI Series 700 paramagnetic analyzer. The analyzer full scale range was 20%. The cell contains an electrolytic fluid that reacts with oxygen to generate an electrical signal proportional to the concentration.

CO₂ was measured using a non-dispersive infrared analyzer manufactured by Horiba (model #PIR 2000). The analyzer full scale range was 20%.

The analyzers and sampling system were subjected to a variety of calibration and quality assurance procedures including leak checks, linearity and calibration error determinations before sampling, and system bias and drift determinations as part of each test run. Data are corrected for any observed bias or drift in accordance with the reference methods.

3.2 HYDROGEN CHLORIDE MEASUREMENTS

Triplicate hydrogen chloride (HCI), samples were collected using EPA Method 26A. Sampling and analysis for HF and Cl₂ which is included in EPA Method 26A was not performed.

The sampling train consists of:

- A glass nozzle and heated glass probe heated to between 248°F and 273°F
- A Teflon Mat out-of-stack filter in a glass filter holder heated to 248°F ± 25°F
- Two impingers containing 100 ml of 0.1 N H₂SO₄ for collection of HCl
- One empty impinger
- An impinger containing silica gel

Samples are withdrawn isokinetically from the stack. The Teflon Mat filter collects particulate matter. The acidic absorbing solution collect gaseous HCl and is analyzed for HCl by ion chromatography.

The samples are recovered in the following sample fraction:

• Back half of filter holder, H₂SO₄ Impinger Catch – Weighed for moisture content and recovered with DI water into pre-cleaned HDPE bottle.

The filter and probe wash were not recovered for this test program.

Quality assurance samples collected in the field are:

- A field blank
- A reagent blank: 200 ml of 0.1 N H₂SO₄
- A reagent blank: 200 ml of DI water

The samples were analyzed by ion chromatography by AAC in Ventura.

3.3 VELOCITY AND MOISTURE

Stack gas velocity and moisture content were determined by EPA Methods 2 and 4 during the HCL testing.

3.4 FUEL ANALYSIS

Daily fuel samples were collected by Desert View Power personnel. Hourly samples were taken during each HCl test run and composited by the lab prior to analysis. Sampling was consistent with ASTM D6323 sample collection methodology. Desert View power sent the samples out to be analyzed for higher heating value for heat rate calculations, for Btu/lb for calculating the HCL emissions in lb/MMBtu using ASTM E711, for moisture content using ASTM D3173 and for chlorine content using ASTM E776. Copies of the analysis can be found in the appendices.

4.0 TEST RESULTS

This section presents the results of the performance tests conducted at Desert View Power, during June of 2020. Test results are presented in the following sections:

- 4.1 Unit 1 Performance Test Results
- 4.2 Unit 2 Performance Test Results
- 4.3 Fuel Analysis Results

All supporting data sheets, CEM data, instrument strip charts, laboratory data, chain of custody records, and quality assurance data are included in Appendix A. Plant data are contained in Appendix B. Emissions and Load calculations are presented in Appendix C. Quality assurance information is contained in Appendix D. The test plan that was submitted is contained in Appendix F

4.1 UNIT 1 PERFORMANCE TEST RESULTS

The results of the HCL testing are presented in Table 4-1. HCL emissions for Unit 1 were 0.016 lb/MMBtu. This is within the permit limit of 0.022 lb/MMBtu.

TABLE 4-1
HYDROCHLORIC ACID TEST RESULTS UNIT 1
DESERT VIEW POWER
SEPTEMBER 10, 2020

Parameter/Units	1-HCL-U1	2-HCL-U1	3-HCL-U1	Average	Limit
Date	09/10/2020	09/10/2020	09/10/2020		
Start/Stop Time	553/758	822/1027	1230/1435		
Stack Flow Rate, dscfm	91,227	90,308	89,830	90,455	
Sample Volume, dscf	75.160	75.081	74.543	74.928	
O ₂ , %	8.41	8.40	8.34	8.38	
CO ₂ , %	12.05	12.07	12.10	12.08	
HCI mg/sample mg/dscm	39.4 18.51	39.4 18.53	35.3 16.72	38.0 17.92	
ppm (as HCI) lb/hr (as HCI) MMBtu/Hr	12.20 6.32 383	12.21 6.26 383	11.02 5.62 383	17.92 11.81 6.07 383	
lb/MMBtu	0.017	0.016	0.015	0.016	0.022

4.2 UNIT 2 PERFORMANCE TEST RESULTS

The results of the HCL testing are presented in Table 4-2. HCL emissions for Unit 2 were 0.022 lb/MMBtu. This is within the permit limit of 0.022 lb/MMBtu.

TABLE 4-2 HYDROCHLORIC ACID TEST RESULTS UNIT 2 DESERT VIEW POWER SEPTEMBER 9, 2020

	CL-U2 Average Limit 202020
Date 9/9/202020 9/9/202020 9/9/2	
	7/1/50
Start/Stop Time 810/1016 1030/1235 1247	7/1402
Stack Flow Rate , dscfm 91,692 92,099 91	,787 91,859
Sample Volume , dscf 75.761 76.799 76	.385 76.315
O ₂ , % 8.66 8.56 8	.63 8.61
CO ₂ , % 11.79 11.86 1	1.80 11.82
HCI	
mg/sample 54.0 44.3 5	7.2 51.8
mg/dscm 25.17 20.37 26	5.44 23.99
ppm (as HCl) 16.59 13.43 17	7.43 15.82
lb/hr (as HCl) 8.64 7.02 9	.08 8.25
MMBtu/Hr 372 372 3	372 372
lb/MMBtu 0.023 0.019 0.	0.022 0.022

4.3 FUEL ANALYSIS

The fuel sample analysis results are presented in Appendix A.3.2.

APPENDIX A TEST DATA

Appendix A.1 Unit 1 Data

Appendix A.1.1 Unit 1 Sample Location

Client: Desert View Power

Date: 9/10/2020

Sample Location:

Unit 1-2

Prepared By: Dave Wonderly

Appendix A.1.2 Unit 1 CEM Data

Date	Time		O2 %	,	CO2 %
9/10/2020	1 11110	4:26	02 /	0.00	0.02
9/10/2020		4:27	1	5.77	14.95
9/10/2020		4:28		9.21	18.92
9/10/2020		4:29		9.21	18.93
9/10/2020		4:30		9.16	18.92
9/10/2020		4:31		9.14	18.92 High
9/10/2020		4:32		4.93	14.49
9/10/2020		4:33		0.51	10.57
9/10/2020		4:34		0.51	10.57 Mid
9/10/2020		4:35		2.62	2.47
9/10/2020		4:36		0.00	0.02 Zero
9/10/2020		4:37		4.83	7.60
9/10/2020		4:38		8.64	11.84
9/10/2020		4:39		8.50	11.91
9/10/2020		4:40		8.82	11.68
9/10/2020		4:41		8.12	12.44
9/10/2020		4:42		8.17	12.17
9/10/2020		4:43		9.27	11.27
9/10/2020		4:44		8.47	12.02
9/10/2020		4:45		8.44	12.05
9/10/2020		4:46		8.28	12.23
9/10/2020		4:47		8.91	11.54
9/10/2020		4:48		7.79	12.71
9/10/2020		4:49		8.50	11.97
9/10/2020		4:50		8.10	12.40
9/10/2020		4:51		8.73	11.76
9/10/2020		4:52		7.56	12.84
9/10/2020		4:53		8.87	11.71
9/10/2020		4:54		8.20	12.29
9/10/2020		4:55		8.15	12.38
9/10/2020		4:56		9.14	11.43
9/10/2020		4:57 4:58		9.02 8.85	11.46 11.71
9/10/2020		4:59		8.66	11.71
9/10/2020		5:00		8.59	11.95
9/10/2020		5:01		8.24	12.34
9/10/2020		5:02		8.25	12.26
9/10/2020		5:03		8.15	12.41
9/10/2020		5:04		7.40	13.07
9/10/2020		5:05		7.84	12.71
9/10/2020		5:06		8.44	11.99
9/10/2020		5:07		8.69	11.79
9/10/2020		5:08		8.20	12.38
9/10/2020		5:09		8.81	11.72
9/10/2020		5:10		8.57	11.90

9/10/2020	5:11	8.57	12.02
9/10/2020	5:12	8.45	12.07
9/10/2020	5:13	8.59	11.93
9/10/2020	5:14	8.43	12.11
9/10/2020	5:15	8.20	12.30
9/10/2020	5:16	8.13	12.57
9/10/2020	5:17	7.69	12.71
9/10/2020	5:18	9.08	11.56
9/10/2020	5:19	8.11	12.44
9/10/2020	5:20	7.61	12.88
9/10/2020	5:21	8.87	11.61
9/10/2020	5:22	8.27	12.33
9/10/2020	5:23	8.15	12.33
9/10/2020	5:24		
9/10/2020		8.87	11.64
	5:25	8.79	11.75
9/10/2020	5:26	8.67	11.94
9/10/2020	5:27	8.28	12.14
9/10/2020	5:28	9.07	11.51
9/10/2020	5:29	8.51	12.04
9/10/2020	5:30	7.40	13.16
9/10/2020	5:31	8.44	11.94
9/10/2020	5:32	8.16	12.43
9/10/2020	5:33	9.19	11.23
9/10/2020	5:34	0.71	40.70
3/10/2020	5.54	9.71	10.73
9/10/2020	5:35	10.48	10.73
9/10/2020	5:35	10.48	10.54
9/10/2020 9/10/2020	5:35 5:36	10.48 10.48	10.54 10.56 O2 CO2 Bias 4.75
9/10/2020 9/10/2020 9/10/2020	5:35 5:36 5:37	10.48 10.48 5.34 0.03	10.54 10.56 O2 CO2 Bias 4.75 0.06 Zero Bias
9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020	5:35 5:36 5:37 5:38 5:39	10.48 10.48 5.34 0.03 4.06	10.54 10.56 O2 CO2 Bias 4.75 0.06 Zero Bias 5.86
9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020	5:35 5:36 5:37 5:38 5:39 5:40	10.48 10.48 5.34 0.03 4.06 9.01	10.54 10.56 O2 CO2 Bias 4.75 0.06 Zero Bias 5.86 11.44
9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020	5:35 5:36 5:37 5:38 5:39 5:40 5:41	10.48 10.48 5.34 0.03 4.06 9.01 9.11	10.54 10.56 O2 CO2 Bias 4.75 0.06 Zero Bias 5.86 11.44 11.41
9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020	5:35 5:36 5:37 5:38 5:39 5:40 5:41 5:42	10.48 10.48 5.34 0.03 4.06 9.01 9.11 8.49	10.54 10.56 O2 CO2 Bias 4.75 0.06 Zero Bias 5.86 11.44 11.41 12.15
9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020	5:35 5:36 5:37 5:38 5:39 5:40 5:41 5:42 5:43	10.48 10.48 5.34 0.03 4.06 9.01 9.11 8.49 8.57	10.54 10.56 O2 CO2 Bias 4.75 0.06 Zero Bias 5.86 11.44 11.41 12.15 11.82
9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020	5:35 5:36 5:37 5:38 5:39 5:40 5:41 5:42 5:43 5:44	10.48 10.48 5.34 0.03 4.06 9.01 9.11 8.49 8.57 8.53	10.54 10.56 O2 CO2 Bias 4.75 0.06 Zero Bias 5.86 11.44 11.41 12.15 11.82 12.08
9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020	5:35 5:36 5:37 5:38 5:39 5:40 5:41 5:42 5:43 5:44 5:44	10.48 10.48 5.34 0.03 4.06 9.01 9.11 8.49 8.57 8.53 8.22	10.54 10.56 O2 CO2 Bias 4.75 0.06 Zero Bias 5.86 11.44 11.41 12.15 11.82 12.08 12.25
9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020	5:35 5:36 5:37 5:38 5:39 5:40 5:41 5:42 5:43 5:44 5:45 5:46	10.48 10.48 5.34 0.03 4.06 9.01 9.11 8.49 8.57 8.53 8.22 8.29	10.54 10.56 O2 CO2 Bias 4.75 0.06 Zero Bias 5.86 11.44 11.41 12.15 11.82 12.08 12.25 12.22
9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020	5:35 5:36 5:37 5:38 5:39 5:40 5:41 5:42 5:43 5:44 5:45 5:46 5:47	10.48 10.48 5.34 0.03 4.06 9.01 9.11 8.49 8.57 8.53 8.22 8.29 8.67	10.54 10.56 O2 CO2 Bias 4.75 0.06 Zero Bias 5.86 11.44 11.41 12.15 11.82 12.08 12.25 12.22 11.78
9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020	5:35 5:36 5:37 5:38 5:39 5:40 5:41 5:42 5:43 5:44 5:45 5:46 5:47 5:48	10.48 10.48 5.34 0.03 4.06 9.01 9.11 8.49 8.57 8.53 8.22 8.29 8.67 8.79	10.54 10.56 O2 CO2 Bias 4.75 0.06 Zero Bias 5.86 11.44 11.41 12.15 11.82 12.08 12.25 12.22 11.78 11.70
9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020	5:35 5:36 5:37 5:38 5:39 5:40 5:41 5:42 5:43 5:44 5:45 5:46 5:47 5:48 5:49	10.48 10.48 5.34 0.03 4.06 9.01 9.11 8.49 8.57 8.53 8.22 8.29 8.67 8.79 8.03	10.54 10.56 O2 CO2 Bias 4.75 0.06 Zero Bias 5.86 11.44 11.41 12.15 11.82 12.08 12.25 12.22 11.78 11.70 12.58
9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020	5:35 5:36 5:37 5:38 5:39 5:40 5:41 5:42 5:43 5:44 5:45 5:46 5:47 5:48 5:49 5:50	10.48 10.48 5.34 0.03 4.06 9.01 9.11 8.49 8.57 8.53 8.22 8.29 8.67 8.79 8.03 7.99	10.54 10.56 O2 CO2 Bias 4.75 0.06 Zero Bias 5.86 11.44 11.41 12.15 11.82 12.08 12.25 12.22 11.78 11.70 12.58 12.61
9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020	5:35 5:36 5:37 5:38 5:39 5:40 5:41 5:42 5:43 5:44 5:45 5:46 5:47 5:48 5:49 5:50 5:51	10.48 10.48 5.34 0.03 4.06 9.01 9.11 8.49 8.57 8.53 8.22 8.29 8.67 8.79 8.03 7.99 7.79	10.54 10.56 O2 CO2 Bias 4.75 0.06 Zero Bias 5.86 11.44 11.41 12.15 11.82 12.08 12.25 12.22 11.78 11.70 12.58 12.61 12.60
9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020	5:35 5:36 5:37 5:38 5:39 5:40 5:41 5:42 5:43 5:44 5:45 5:46 5:47 5:48 5:49 5:50 5:51 5:52	10.48 10.48 5.34 0.03 4.06 9.01 9.11 8.49 8.57 8.53 8.22 8.29 8.67 8.79 8.03 7.99 7.79 9.12	10.54 10.56 O2 CO2 Bias 4.75 0.06 Zero Bias 5.86 11.44 11.41 12.15 11.82 12.08 12.25 12.22 11.78 11.70 12.58 12.61 12.60 11.36
9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020 9/10/2020	5:35 5:36 5:37 5:38 5:39 5:40 5:41 5:42 5:43 5:44 5:45 5:46 5:47 5:48 5:49 5:50 5:51 5:52 5:53	10.48 10.48 5.34 0.03 4.06 9.01 9.11 8.49 8.57 8.53 8.22 8.29 8.67 8.79 8.03 7.99 7.79 9.12 8.42	10.54 10.56 O2 CO2 Bias 4.75 0.06 Zero Bias 5.86 11.44 11.41 12.15 11.82 12.08 12.25 12.22 11.78 11.70 12.58 12.61 12.60 11.36 12.06
9/10/2020 9/10/2020	5:35 5:36 5:37 5:38 5:39 5:40 5:41 5:42 5:43 5:44 5:45 5:46 5:47 5:48 5:49 5:50 5:51 5:52 5:53 5:54	10.48 10.48 5.34 0.03 4.06 9.01 9.11 8.49 8.57 8.53 8.22 8.29 8.67 8.79 8.03 7.99 7.79 9.12 8.42 8.37	10.54 10.56 O2 CO2 Bias 4.75 0.06 Zero Bias 5.86 11.44 11.41 12.15 11.82 12.08 12.25 12.22 11.78 11.70 12.58 12.61 12.60 11.36 12.06 12.26
9/10/2020 9/10/2020	5:35 5:36 5:37 5:38 5:39 5:40 5:41 5:42 5:43 5:44 5:45 5:46 5:47 5:48 5:49 5:50 5:51 5:52 5:53 5:54 5:55	10.48 10.48 5.34 0.03 4.06 9.01 9.11 8.49 8.57 8.53 8.22 8.29 8.67 8.79 8.03 7.79 9.12 8.42 8.37 8.59	10.54 10.56 O2 CO2 Bias 4.75 0.06 Zero Bias 5.86 11.44 11.41 12.15 11.82 12.08 12.25 12.22 11.78 11.70 12.58 12.61 12.60 11.36 12.06 12.26 11.72
9/10/2020 9/10/2020	5:35 5:36 5:37 5:38 5:39 5:40 5:41 5:42 5:43 5:44 5:45 5:46 5:47 5:48 5:49 5:50 5:51 5:52 5:53 5:54	10.48 10.48 5.34 0.03 4.06 9.01 9.11 8.49 8.57 8.53 8.22 8.29 8.67 8.79 8.03 7.99 7.79 9.12 8.42 8.37	10.54 10.56 O2 CO2 Bias 4.75 0.06 Zero Bias 5.86 11.44 11.41 12.15 11.82 12.08 12.25 12.22 11.78 11.70 12.58 12.61 12.60 11.36 12.06 12.26

9/10/2020	5:58	8.61	11.89
9/10/2020	5:59	8.37	12.18
9/10/2020			12.10
9/10/2020	6:00	7.93	12.67
9/10/2020	6:01	7.11	13.33
9/10/2020	6:02	7.86	12.55
9/10/2020	6:03	8.90	11.58
9/10/2020	6:04	9.42	11.02
9/10/2020	6:05	8.76	11.89
9/10/2020	6:06	8.62	11.86
9/10/2020	6:07	8.45	12.01
9/10/2020	6:08	6.95	13.69
9/10/2020	6:09	8.16	12.30
9/10/2020	6:10		11.77
		8.63	
9/10/2020	6:11	8.25	12.16
9/10/2020	6:12	8.42	12.10
9/10/2020	6:13	8.20	12.42
9/10/2020	6:14	7.46	12.90
9/10/2020	6:15	8.22	12.23
9/10/2020	6:16	8.47	12.16
9/10/2020	6:17	8.29	12.20
9/10/2020	6:18	8.45	12.06
9/10/2020	6:19	7.82	12.72
9/10/2020	6:20	8.19	12.24
9/10/2020	6:21	8.16	12.36
9/10/2020	6:22	6.67	13.81
9/10/2020	6:23	8.07	12.32
9/10/2020	6:24	9.34	11.18
9/10/2020	6:25	8.22	12.28
9/10/2020	6:26	8.82	11.74
9/10/2020	6:27	7.91	12.51
9/10/2020	6:28	8.66	11.81
9/10/2020	6:29	8.16	12.41
9/10/2020	6:30	8.09	12.37
9/10/2020	6:31	8.52	11.88
9/10/2020	6:32	8.99	11.51
9/10/2020	6:33	8.00	12.58
9/10/2020	6:34	7.95	12.47
9/10/2020	6:35	8.27	12.18
9/10/2020	6:36	9.01	11.37
9/10/2020	6:37	8.43	12.12
** * * * * * * * * * * * * * * * * * * *			
9/10/2020	6:38	9.01	11.38
9/10/2020	6:39	8.59	11.94
9/10/2020	6:40	8.50	11.99
9/10/2020	6:41	8.87	11.52
9/10/2020	6:42	8.38	12.17
9/10/2020	6:43	7.75	12.62
9/10/2020	6:44	8.81	11.68
3/ 10/2020	0.44	0.01	11.00

9/10/2020	6:45	8.55	11.95
9/10/2020	6:46	8.71	11.68
9/10/2020	6:47	8.48	12.08
9/10/2020	6:48	8.53	11.79
9/10/2020	6:49	8.74	11.81
9/10/2020	6:50	7.70	12.79
9/10/2020	6:51	8.19	12.27
9/10/2020	6:52	8.67	11.83
9/10/2020	6:53	7.88	12.54
9/10/2020	6:54	7.77	12.67
9/10/2020	6:55	8.53	12.02
9/10/2020	6:56	8.71	11.69
9/10/2020	6:57	9.16	11.34
9/10/2020	6:58	8.21	12.26
9/10/2020	6:59	8.89	11.61
9/10/2020	7:00	7.88	12.51
9/10/2020	7:01	8.80	11.66
9/10/2020	7:02	8.91	11.65
9/10/2020	7:03	8.15	12.28
9/10/2020	7:04		11.78
		8.68	
9/10/2020	7:05	8.79	11.70
9/10/2020	7:06	8.89	11.59
9/10/2020	7:07	8.65	11.83
9/10/2020	7:08	8.57	11.95
9/10/2020	7:09	8.64	11.81
9/10/2020	7:10	8.22	12.41
9/10/2020	7:11	7.75	12.60
9/10/2020	7:12	8.03	12.45
9/10/2020	7:13	8.05	12.51
	7:14		
9/10/2020		9.49	10.93
9/10/2020	7:15	8.68	11.85
9/10/2020	7:16	8.30	12.26
9/10/2020	7:17	8.20	12.32
9/10/2020	7:18	9.14	11.28
9/10/2020			
	7:19	8.84	11.83
9/10/2020	7:20	8.54	11.99
9/10/2020	7:21	8.54	12.00
9/10/2020	7:22	8.53	12.00
9/10/2020	7:23	8.05	12.49
		7.84	
9/10/2020	7:24		12.57
9/10/2020	7:25	9.24	11.19
9/10/2020	7:26	9.48	11.00
9/10/2020	7:27	8.98	11.59
9/10/2020	7:28	8.37	12.20
9/10/2020	7:29	7.66	12.92
9/10/2020	7:30	8.37	12.01
9/10/2020	7:31	8.42	12.12

9/10/2020	7:32	7.61	12.88	
9/10/2020	7:33	9.31	11.07	
9/10/2020	7:34	8.70	11.78	
9/10/2020	7:35	7.77	12.90	
9/10/2020	7:36	7.93	12.54	
9/10/2020	7:37	8.09	12.32	
9/10/2020	7:38	8.21	12.29	
9/10/2020	7:39	8.16	12.32	
9/10/2020	7:40	8.73	11.78	
9/10/2020	7:41	7.67	12.84	
9/10/2020	7:42	8.09	12.44	
9/10/2020	7:43	7.96	12.31	
9/10/2020	7:44	9.89	10.66	
9/10/2020	7:45	8.89	11.64	
9/10/2020	7:46	9.31	11.25	
9/10/2020	7:47	8.79	11.78	
9/10/2020	7:48	8.87	11.68	
9/10/2020	7:49	7.54	13.04	
9/10/2020	7:50	7.76	12.71	
9/10/2020	7:51	8.26	12.15	
9/10/2020	7:52	8.39	12.24	
9/10/2020	7:53	7.94	12.55	
9/10/2020	7:54	8.44	12.04	
9/10/2020	7:55	8.30	12.35	
9/10/2020	7:56	8.66	11.74	
9/10/2020	7:57	9.20	11.33	
9/10/2020	7:58	7.73	12.79	
Run 1 Average		8.41	12.08	
9/10/2020	7:59	1.29	0.88	
9/10/2020	8:00	0.05	0.05	Zero Bias
9/10/2020	8:01	6.58	7.01	-
9/10/2020	8:02	10.46	10.48	O2 CO2 Bias
9/10/2020	8:03	1.50	1.67	•
9/10/2020	8:04	0.00	0.02	Zero
9/10/2020	8:05	7.59	7.85	•
9/10/2020	8:06	10.50	10.56	
9/10/2020	8:07	10.51	10.56	Span
9/10/2020	8:08	10.50	10.56	
9/10/2020	8:09	9.07	11.72	
9/10/2020	8:10	8.24	12.08	
9/10/2020	8:11	8.52	12.02	
9/10/2020	8:12	8.42	11.97	
9/10/2020	8:13	9.25	11.21	
9/10/2020	8:14	9.23	11.28	
9/10/2020	8:15	8.53	11.95	
9/10/2020	8:16	8.62	11.80	
9/10/2020	8:17	8.57	11.87	

9/10/2020	8:18	8.14	12.41
9/10/2020	8:19	7.80	12.69
9/10/2020	8:20	7.93	12.32
9/10/2020	8:21	9.05	11.52
9/10/2020	8:22	7.62	12.71
9/10/2020	8:23	8.11	12.39
9/10/2020	8:24	8.28	12.06
9/10/2020	8:25	9.45	11.04
9/10/2020	8:26	8.10	12.44
9/10/2020	8:27	8.22	12.44
9/10/2020	8:28	7.45	12.99
9/10/2020	8:29	8.19	12.24
9/10/2020	8:30	8.38	11.93
9/10/2020	8:31	9.05	11.38
9/10/2020	8:32	8.15	12.34
9/10/2020	8:33	8.16	12.33
9/10/2020	8:34	7.50	12.91
9/10/2020	8:35	9.11	11.17
9/10/2020	8:36	9.11	11.37
9/10/2020	8:37	8.10	12.41
9/10/2020	8:38	9.07	11.38
9/10/2020	8:39	7.48	12.86
9/10/2020	8:40	9.07	11.31
9/10/2020	8:41	8.97	11.61
9/10/2020	8:42	7.82	12.63
9/10/2020	8:43	7.45	13.00
9/10/2020	8:44	8.66	11.74
9/10/2020	8:45	8.69	11.79
9/10/2020	8:46	8.21	12.30
9/10/2020	8:47	8.09	12.37
9/10/2020	8:48	8.63	11.74
9/10/2020	8:49	8.15	12.32
9/10/2020	8:50	6.15 7.74	
	0.00		12.75
9/10/2020	8:51	8.45	11.96
9/10/2020	8:52	8.47	11.98
9/10/2020	8:53	8.79	11.67
9/10/2020	8:54	9.06	11.54
9/10/2020	8:55	7.98	12.47
9/10/2020	8:56	7.21	13.18
9/10/2020	8:57	7.41	13.14
9/10/2020	8:58	8.23	12.24
9/10/2020	8:59	8.86	11.55
9/10/2020	9:00	8.83	11.71
9/10/2020	9:01	9.24	11.24
9/10/2020	9:02	8.16	12.42
9/10/2020	9:03	7.80	12.59
9/10/2020	9:04	8.95	11.46

9/10/2020	9:05	8.68	11.96
9/10/2020	9:06	8.33	12.22
9/10/2020	9:07	7.84	12.65
9/10/2020	9:08	8.98	11.46
9/10/2020	9:09	8.79	11.79
9/10/2020	9:10	9.06	11.41
9/10/2020	9:11	8.88	11.60
9/10/2020	9:12	8.14	12.44
9/10/2020	9:13	8.19	12.27
9/10/2020	9:14	8.38	12.04
9/10/2020	9:15	8.94	11.57
9/10/2020	9:16	8.52	12.00
9/10/2020	9:17	7.60	12.93
9/10/2020	9:18	7.94	12.46
9/10/2020	9:19	8.97	11.52
9/10/2020	9:20	8.26	12.27
9/10/2020	9:21	8.85	11.63
9/10/2020	9:22	8.31	12.23
9/10/2020	9:23	8.15	12.33
9/10/2020	9:24	8.65	11.86
9/10/2020	9:25	8.64	11.81
9/10/2020	9:26	8.26	12.26
9/10/2020	9:27	8.40	12.08
9/10/2020	9:28	8.53	11.92
9/10/2020	9:29	9.39	11.12
9/10/2020	9:30	8.36	12.13
9/10/2020	9:31	7.78	12.73
9/10/2020	9:32	8.25	12.15
9/10/2020	9:33	8.66	11.92
9/10/2020	9:34	7.88	12.51
9/10/2020	9:35	8.29	12.18
9/10/2020	9:36	8.37	12.16
9/10/2020	9:37	7.95	12.57
9/10/2020	9:38	8.05	12.32
9/10/2020	9:39	6.94	13.52
9/10/2020	9:40	6.97	13.64
9/10/2020	9:41	8.16	12.12
9/10/2020	9:42	8.70	11.87
9/10/2020	9:43	8.07	12.36
9/10/2020	9:44	8.46	11.99
9/10/2020	9:45	8.47	11.97
9/10/2020	9:46	8.92	11.61
9/10/2020	9:47	8.76	11.61
9/10/2020	9:48	8.49	11.98
9/10/2020	9:49	7.48	13.03
9/10/2020	9:50	8.06	12.45
9/10/2020	9:51	8.48	11.85

9/10/2020	9:52	9.14	11.34	
9/10/2020	9:53	7.81	12.73	
9/10/2020	9:54	7.42	13.00	
9/10/2020	9:55	9.03	11.31	
9/10/2020	9:56	9.45	11.07	
9/10/2020	9:57	9.13	11.29	
9/10/2020	9:58	9.05	11.50	
9/10/2020	9:59	8.11	12.41	
9/10/2020	10:00	8.00	12.46	
9/10/2020	10:01	8.44	11.91	
9/10/2020	10:02	8.53	12.01	
9/10/2020	10:03	8.60	11.87	
9/10/2020	10:04	8.66	11.81	
9/10/2020	10:05	8.38	12.08	
9/10/2020	10:06	8.01	12.55	
9/10/2020	10:07	8.30	12.00	
9/10/2020			11.46	
	10:08	9.01		
9/10/2020	10:09	8.47	12.04	
9/10/2020	10:10	8.02	12.48	
9/10/2020	10:11	8.18	12.24	
9/10/2020	10:12	8.67	11.81	
9/10/2020	10:13	8.18	12.35	
9/10/2020	10:14	8.11	12.31	
9/10/2020	10:15	7.76	12.72	
9/10/2020	10:16	7.46	13.06	
9/10/2020	10:17	7.36	12.96	
9/10/2020	10:18	8.93	11.48	
9/10/2020	10:19	9.60	10.77	
9/10/2020	10:20	9.09	11.40	
9/10/2020	10:21	9.51	10.84	
9/10/2020	10:22	9.67	10.78	
9/10/2020	10:23	8.22	12.20	
9/10/2020	10:24	7.86	12.72	
9/10/2020	10:25	8.01	12.38	
9/10/2020	10:26	7.72	12.76	
9/10/2020	10:27	7.93	12.48	
Run 2 Average		8.37	12.09	[
9/10/2020	10:28	7.57	11.79	
9/10/2020	10:29	8.19	12.13	Zero Bias
9/10/2020	10:30	8.27	10.77	Zero Bias
9/10/2020	10:31	10.41		los cos Biss
				O2 CO2 Bias
9/10/2020	10:32	4.06	3.49	l- n:
9/10/2020	10:33	0.04	0.06	Zero Bias
9/10/2020	10:34	8.99	9.13	I.
9/10/2020	10:35	10.44	10.60	Span
9/10/2020	10:36	3.10	3.02	
9/10/2020	10:37	-0.01	0.02	Zero

9/10/2020	10:38	5.22	8.96
9/10/2020	10:39	8.20	12.23
9/10/2020	10:40	8.30	12.01
9/10/2020	10:41	8.65	11.65
9/10/2020	10:42	8.90	11.49
9/10/2020	10:43	8.68	11.71
9/10/2020	10:44	8.34	12.15
9/10/2020	10:45	8.40	11.92
9/10/2020	10:46	8.47	11.88
9/10/2020	10:47	8.35	12.04
9/10/2020	10:48	8.42	11.96
9/10/2020	10:49	8.85	11.54
9/10/2020	10:50	8.16	12.23
9/10/2020	10:51	8.57	11.88
9/10/2020	10:52	8.71	11.68
9/10/2020	10:53	9.44	10.98
9/10/2020	10:54	7.09	13.45
9/10/2020	10:55	6.65	13.66
9/10/2020	10:56	8.25	11.96
9/10/2020	10:57	8.63	11.92
9/10/2020	10:58	7.81	12.63
9/10/2020	10:59	8.72	11.56
9/10/2020	11:00	9.04	11.37
9/10/2020	11:01	9.07	11.29
9/10/2020	11:02	8.48	12.05
9/10/2020	11:03	7.58	12.77
9/10/2020	11:04	7.66	12.79
9/10/2020	11:05	8.07	12.28
9/10/2020	11:06	8.20	12.19
9/10/2020	11:07	7.80	12.56
9/10/2020	11:08	8.05	12.36
9/10/2020	11:09	7.89	12.50
9/10/2020	11:10	8.19	12.15
9/10/2020	11:11	8.96	11.41
9/10/2020	11:12	8.51	11.90
	11:13		
9/10/2020		8.62	11.67
9/10/2020	11:14	8.37	12.18
9/10/2020	11:15	7.42	12.99
9/10/2020	11:16	8.17	12.03
9/10/2020	11:17	8.25	12.19
	11:18		12.13
9/10/2020		7.64	
9/10/2020	11:19	7.70	12.55
9/10/2020	11:20	8.28	12.18
9/10/2020	11:21	7.53	12.86
9/10/2020	11:22	8.65	11.59
9/10/2020	11:23	8.31	12.17
9/10/2020	11:24	8.07	12.24

9/10/2020	11:25	8.33	12.14
9/10/2020	11:26	7.94	12.28
9/10/2020	11:27	8.64	11.69
9/10/2020	11:28	8.11	12.20
9/10/2020	11:29	8.00	12.52
9/10/2020	11:30	9.08	11.20
9/10/2020	11:31	8.51	12.04
9/10/2020	11:32	7.17	13.02
9/10/2020	11:33	8.77	11.38
9/10/2020	11:34	8.59	12.00
9/10/2020	11:35	8.03	12.36
9/10/2020	11:36	8.85	11.33
9/10/2020	11:37	9.12	10.16
9/10/2020	11:38	10.34	10.51 O2 CO2 Bias
9/10/2020	11:39	4.86	4.05
9/10/2020	11:40	0.04	0.06 Zero Bias
9/10/2020	11:41	4.37	6.58
9/10/2020	11:42	8.12	
			12.25
9/10/2020	11:43	7.82	12.46
9/10/2020	11:44	8.70	11.73
9/10/2020	11:45	8.75	11.55
9/10/2020	11:46	9.01	11.32
9/10/2020	11:47	8.51	11.84
9/10/2020	11:48	8.02	12.49
9/10/2020	11:49	9.14	11.20
9/10/2020	11:50	7.89	12.55
9/10/2020	11:51	8.01	12.24
9/10/2020	11:52	7.34	12.96
9/10/2020	11:53	9.22	11.13
9/10/2020	11:54	7.97	12.45
9/10/2020	11:55	7.94	12.24
			11.66
9/10/2020	11:56	8.69	
9/10/2020	11:57	8.54	11.91
9/10/2020	11:58	8.99	11.19
9/10/2020	11:59	9.49	10.82
9/10/2020	12:00	8.09	12.37
9/10/2020	12:01	7.03	13.55
9/10/2020	12:02	7.45	12.66
9/10/2020	12:03	7.86	12.54
9/10/2020	12:04	8.44	11.79
9/10/2020	12:05	8.56	11.72
9/10/2020	12:06	9.52	10.96
9/10/2020	12:07	8.38	11.76
9/10/2020	12:08	7.34	13.20
9/10/2020	12:09	8.77	11.38
9/10/2020	12:10	9.26	11.08
9/10/2020	12:11	9.93	10.41

9/10/2020	12:12	8.49	12.03
9/10/2020	12:13	6.94	13.41
9/10/2020	12:14	7.22	13.14
9/10/2020	12:15	8.07	12.16
9/10/2020	12:16	8.52	11.62
9/10/2020	12:17	8.98	11.59
9/10/2020	12:18	7.91	12.51
9/10/2020	12:19	7.63	12.68
9/10/2020	12:20	7.66	12.69
9/10/2020	12:21	7.37	13.16
9/10/2020	12:22	7.53	12.73
9/10/2020	12:23	7.91	12.47
9/10/2020	12:24	8.65	11.68
9/10/2020	12:25	7.58	11.60
9/10/2020	12:26	10.10	10.46
9/10/2020	12:27	10.31	10.50 O2 CO2 Bias
9/10/2020	12:28	3.25	2.42
9/10/2020	12:29	0.03	0.05 Zero Bias
9/10/2020	12:30	2.17	5.03
9/10/2020	12:31	7.97	12.45
9/10/2020	12:32	7.66	12.68
9/10/2020	12:33	7.78	12.55
9/10/2020	12:34	8.70	11.74
9/10/2020	12:35	9.97	10.28
9/10/2020	12:36	8.14	12.33
9/10/2020	12:37	7.43	12.86
9/10/2020			
	12:38	8.78	11.71
9/10/2020	12:39	8.56	11.58
9/10/2020	12:40	8.68	11.85
9/10/2020	12:41	7.95	12.38
9/10/2020	12:42	7.86	12.54
9/10/2020	12:43	7.42	12.97
	12:44		
9/10/2020		7.23	13.15
9/10/2020	12:45	8.22	12.14
9/10/2020	12:46	8.67	11.49
9/10/2020	12:47	9.25	11.08
9/10/2020	12:48	8.81	11.39
9/10/2020	12:49	8.80	11.70
9/10/2020	12:50	8.29	12.09
9/10/2020	12:51	7.96	12.39
9/10/2020	12:52	7.68	12.58
9/10/2020	12:53	8.39	11.97
9/10/2020	12:54	8.28	12.07
9/10/2020	12:55	7.99	12.36
9/10/2020	12:56	8.58	11.63
9/10/2020	12:57	8.46	11.87
9/10/2020	12:58	8.35	11.93

9/10/2020	12:59	8.30	12.01
9/10/2020	13:00	8.12	12.19
9/10/2020	13:01	8.19	12.18
9/10/2020	13:02	6.97	13.28
9/10/2020	13:03	8.09	12.13
9/10/2020	13:04	8.30	11.93
9/10/2020	13:05	8.43	11.95
9/10/2020	13:06	8.05	12.19
9/10/2020	13:07	7.93	12.26
9/10/2020	13:08	7.68	12.71
9/10/2020	13:09	7.35	12.95
9/10/2020	13:10	7.88	12.34
9/10/2020	13:11	8.66	11.60
9/10/2020	13:12	9.08	11.13
9/10/2020	13:13	7.79	12.67
9/10/2020	13:14	8.29	11.91
9/10/2020	13:15	7.67	12.55
9/10/2020	13:16	7.76	12.53
9/10/2020	13:17	7.87	12.46
9/10/2020	13:18	7.99	12.30
9/10/2020	13:19	8.62	11.46
9/10/2020	13:20	8.49	11.76
9/10/2020	13:21	9.11	11.21
9/10/2020	13:22	8.51	11.77
9/10/2020	13:23	7.50	12.80
9/10/2020	13:24	8.06	12.07
9/10/2020	13:25	8.74	11.63
9/10/2020	13:26	7.42	12.85
9/10/2020	13:27	8.80	11.27
9/10/2020	13:28	9.38	11.02
9/10/2020	13:29	7.57	12.67
9/10/2020	13:30	7.66	12.70
9/10/2020	13:31	7.92	12.24
9/10/2020	13:32	8.42	11.85
9/10/2020	13:33	8.22	12.11
9/10/2020	13:34	8.21	12.18
9/10/2020	13:35	6.98	13.43
9/10/2020	13:36	7.00	13.04
9/10/2020	13:37	8.66	11.53
9/10/2020	13:38	8.67	11.65
9/10/2020	13:39	7.96	12.32
9/10/2020	13:40	8.22	12.10
9/10/2020	13:41	8.93	11.32
9/10/2020	13:42	8.88	11.42
9/10/2020	13:43	9.12	11.14
9/10/2020	13:44	8.41	11.80
9/10/2020	13:45	7.90	12.52

9/10/2020	13:46	8.52	11.74
9/10/2020	13:47	7.79	12.60
9/10/2020	13:48	7.91	12.36
9/10/2020	13:49	7.91	
			12.24
9/10/2020	13:50	8.27	12.10
9/10/2020	13:51	8.25	12.02
9/10/2020	13:52	8.61	11.67
9/10/2020	13:53	7.94	12.31
9/10/2020	13:54	7.95	12.38
9/10/2020	13:55	7.24	13.09
9/10/2020	13:56	8.01	12.17
9/10/2020	13:57	9.28	10.94
9/10/2020	13:58	8.58	11.58
9/10/2020	13:59	7.81	12.57
9/10/2020			
	14:00	7.49	12.82
9/10/2020	14:01	7.52	12.76
9/10/2020	14:02	7.69	12.60
9/10/2020	14:03	8.35	11.95
9/10/2020	14:04	7.65	12.59
9/10/2020	14:05	8.43	11.75
9/10/2020	14:06	7.88	12.39
9/10/2020	14:07	8.25	12.01
9/10/2020	14:08	7.41	12.98
9/10/2020	14:09	8.00	12.00
9/10/2020	14:10	8.71	11.63
9/10/2020	14:11	7.88	12.46
9/10/2020	14:12	8.10	12.14
9/10/2020			
	14:13	7.89	12.31
9/10/2020	14:14	7.89	12.25
9/10/2020	14:15	7.87	12.50
9/10/2020	14:16	8.32	11.96
9/10/2020	14:17	8.79	11.18
9/10/2020	14:18	9.43	10.91
9/10/2020	14:19	7.57	12.85
9/10/2020	14:20	7.37	12.95
9/10/2020	14:21	7.36	12.84
9/10/2020	14:22	7.68	12.42
9/10/2020	14:23	8.66	11.58
9/10/2020	14:24	7.87	12.39
9/10/2020	14:25	7.52	12.68
9/10/2020	14:26	8.50	11.61
9/10/2020	14:27	8.45	
			11.85
9/10/2020	14:28	8.10	12.24
9/10/2020	14:29	8.50	11.40
9/10/2020	14:30	8.91	11.46
9/10/2020	14:31	7.98	12.35
9/10/2020	14:32	7.87	12.33

9/10/2020	14:33	8.21	12.18	
9/10/2020	14:34	7.56	12.62	
9/10/2020	14:35	8.36	11.79	
Run 3 Averag	je 🔽	8.16	12.12	
9/10/2020	14:36	5.27	6:52	N) Sr
9/10/2020	14:37	0.03	0.06	Zero Bias
9/10/2020	14:38	2.80	3.73	
9/10/2020	14:39	10.17	10.50	O2 CO2 Bias
9/10/2020	14:40	4.00	4.15	N
9/10/2020	14:41	-0.02	0.02	Zero
9/10/2020	14:42	4.43	4.79	•:
9/10/2020	14:43	10.30	10.55	
9/10/2020	14:44	10.32	10.55	Span
9/10/2020	14:45	17.71	17.89	1 1
9/10/2020	14:46	18.77	18.91	High

Appendix A.1.3 Unit 1 Instrument Strip Charts

SPAN GAS RECORD

 DLIENT/LOCATION:
 Desert View Power
 DATE:
 9/10/2020

 Unit 1
 BY:
 DW

	MID SPAN	CYLINDER	HIGH SPAN CYLINDER	
	CYLINDER NO.	CONCENTRATION	CYLINDER NO.	CONCENTRATION
ZERO	CC88043	0.00		
O ₂	DT0022871	10.48	DT0011386	19.15
CO ₂	DT0022871	10.48	DT0011386	18.94

W002AS-789048-RT-1697

36 of 265

W002AS-789048-RT-1697

42 of 265

Appendix A.1.4 Unit 1 Hydrogen Chloride Data

Imp. # Contents Post-Test - Pre-Test = Difference Silica gel 10 47. ((033.1 0.1N H2SO4 987.7 0.1N H2SO4 Temp, °F Empty Rinse 225 72 5000 7.8 7 Total: 4 ကျ Meter 73 72 78 78 33 75 2 Imp. Out Temp, °F 410 14 7 方か 43 55 44 15/5 3 in. Hg. in. Hg 3 2 ₽ Temp, °F POST: Glass Filter **DVP #1 Glass** SAMPLE CUSTODIAN SAMPLE CUSTODIAN 252 257 255 252 253 252 287 285 254 25.7 257 7.0x 152 FILTER NO/TYPE: Teflon Mat PRE-TEST LEAK RATE:: £3,005 CFM@ 0.0 POST-TEST LEAK RATE: : 23.205 CFM@ PITOT LEAK CHECK - PRE: . 4 12.5 0.84 0.221 SAMPLER တ် Temp, °F Probe 2551 253 254 8 253 258 988 2.55 256 257 NOZZLE ID NO/ MATERIAL: AMBIENT TEMPERATURE: BAROMETRIC PRESSURE PROBE ID NO/MATERIAL PITOT TUBE COEFF, Cp. ASSUMED MOISTURE: CHAIN OF CUSTODY: NOZZLE DIAMETER: Temp, °F Stack 00/ FILTER NO/TYPE: PROBE LENGTH: 399 601-00/ (100 399 CCH 400 00% 394 399 દ્ધ in. H₂0 2 10 ů ن w 1 1.3 \geq in. H₂O Stack Breaching ΔP STACK AREA, FT2: 38.8 FRAVERSE POINTS, MIN/POINT: 4x30 00 00 0.0 Ö 3 18. Ç 5000 5/ 5.00\$ Desert View Power

4 φ

METER BOX NO:

OPERATOR:

RUN NO:

METER AH@:

29-WCS

600 1.838

METER Yd: STACK AREA, FT²:

Probe Condition, pre/post test: V/

X AP:

₽H∇

Silica Gel Expanded, Y/N: Filter Condition after Test:

Check Weight:

Patrick Whitman

9/10 /2020

OCATION

HCL-U Unit 1

ことった

247

746.2747.

512

764.

WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET - STANDARD

1279

2

S65-41,

654

17

20

P. static in. H₂O

% 0

Vacuum in. Hg

ort O

1000

N

25

S

26

349.545

0609

3417,135

5090

d

49 of 265

344.770

080

354.975

250

N

357.410

2290

352.08

1130

354,750

0618

ハシ

352.087

0613

362.440

0630

0634

364.943

364.943

0635 9639

367.420 369.725

371.990 374.255

6430

1500

0643

3

J

Average Pc. | 0655 | 376,487

Volume, ft³

Point

Meter

339.510

341.195

0557

2 %

2 2 2

19

0

S

2000

en'

is

28

20

7

256

4/5

CS2

222

399

1

452

Comments: Fad an Q 0540=1.25/0001=1.3/00648=1.35

20,0

+77

Š

WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET - STANDARD

							in. Hg	in. Hg		ΜQ	ΡW	ΝΩ	
3		Glass		Glass					POST:	DIAN		DDIAN	
12.5	0.84	# 75	Ć,	DVP #1 Glass	0.221	ı Mat	CFM@	CFM@		SAMPLE CUSTODIAN	LER	SAMPLE CUSTODIAN	
AMBIENT TEMPERATURE: BAROMETRIC PRESSURE: ASSUMED MOISTURE:	PITOT TUBE COEFF, Cp:	PROBE ID NO/MATERIAL:	PROBE LENGTH:	NOZZLE ID NO/ MATERIAL:	NOZZLE DIAMETER:	FILTER NO/TYPE: Teflon Mat	PRE-TEST LEAK RATE::	POST-TEST LEAK RATE:	PITOT LEAK CHECK - PRE:	CHAIN OF CUSTODY: SAMPL	SAMPLER	SAMPL	

Imp. #Contents Post-Test - Pre-Test = Difference				25.		
imp. #Contents Pos	_1 0.1N H2SO4	_2 O.1N H2SO4	_3 Empty	-4_ Silica gel	Rinse	Total:

	Meter	ΔР	PΛ	Stack	Probe	Filter	Imp. Out	Meter T	Meter Temp, °F	Vacuum	² 0	P. static
Time	Volume, ft ³	in. H ₂ O	in. H ₂ O	Temp, °F	Temp, °F	Temp, °F	Temp, °F	드	Ont	in. Hg.	%	in. H ₂ O
2536	376.487	1.1	5	ce/2	1251	253	hh	83	00	20		4.32
0010	379.150	1.2	ب	4(2)	253	252	45	128	88	" V		
hole	381.830	1.0	5/	1/22	155	2.52	45	85	83	7.27		
8060	3 84.79 S	25.	2.5	00/7	256	552	Sh	98	65	\$\$		
2/10	386.880	260	ا:۲	401	757	7501	24	88	65	۶.,		
9110	998.688											
2717	384.88	1.1	5.1	1017	253	532	47	86	62	30		
1260	392.530	6.7	7.4	4/03	hsZ	252	۲5	9.8	15	2,,		
0725	394,510	1.1	7.5	1017	255	253	47	98	15	ک"		
2299	397.155	7.1	1.6	101	255	452	48	67	15	کر۔۔		
2733	399.910	% % %	(,3	ceh	hs7	252	85	63	75	5.5		
7570	355:10/2											
38LC	402.358	1.0	1.4	400	253	4sd	47	88	92	5"		
2746	000 504	7.1	9	005	254	257	48	88	26	S.«		
946	407.755	1.1	5.	(00)	255	253	85	50	24	2.4		
0510	084.0H	647	1.3	(10)	256	253	78/	89	46	5″		
751C	412.910	.45	1.3	6/20	253	255	5/2	60	46	5,,5		
075E	Average ENDONS 4/15.40 6	1.0308	1.367	1/ 500 . (65.4				

WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET - STANDARD

Desert V Unit 1 9/ 10 /20 -HCL-U1 :: Patrick V x No:	METER Yd: 1.009 STACK AREA, FT ² : 38.8 TRAVERSE POINTS, MIN/POINT: 4x30 AH= X \(\Delta P\) Probe Condition, pre/post test: \(\ldots\)
---	---

600/0000

Check Weight:

									in. Hg.	in. Hg	1	ΔW	ΡW	ΔW
,				Glass		Glass			5/	15	POST:	ODIAN		DDIAN
forb	30.10	12.5	0.84	# 75	6,	DVP #1 Glass	0.221	Mat	1225 CFM@	S CFM@	/	SAMPLE CUSTODIAN	ËR	SAMPLE CUSTODIAN
AMBIENT TEMPERATURE:		ASSUMED MOISTURE:	TOT TUBE COEFF, Cp.	PROBE ID NO/MATERIAL:	PROBE LENGTH:	NOZZLE ID NO/ MATERIAL:	NOZZLE DIAMETER:	FILTER NO/TYPE: Teflon Mat	ATE:	POST-TEST LEAK RATE: : \$2005 CFM@	PITOT LEAK CHECK - PRE:	CHAIN OF CUSTODY: SAMPL	SAMPLER	SAMPL

ference	239.7	26.7	3.2	24.5	->-	249.5
re-Test = Dif	677-1 239-7	(32 2767	2,505	934.0	50	
Imp. #Contents Post-Test - Pre-Test = Difference	24 916-8	0.1N H2SO4 722.9	508.4 505.2	963.9 934.0		
# Contents	0.1N H2SO4 916-8	0.1N H2SC	Empty	Silica gel_	Rinse	
Imp. 3	- 	2,	ကျ	4	1	Total:

		Meter	ΔP	Ч∇	Stack	Probe	Filter	Imp. Out	Meter T	emp, °F		o O	P. static
Point	Time	Volume, ft ³	in. H ₂ O	in. H ₂ O	Temp, °F	Temp, °F	Temp, °F	Temp, °F	드	ont		%	in. H ₂ O
N	Olir	417.000	1.7	9./	2/20	252	152	culs	200	90 93	3,5		432
17	0826	419.760	1-1	1.5	104	255	256	ch	020	63			
6	0830	515.217	1.1	. S	103	752	251	7/2	75	76			
2	h880	CO2:57/7	0.1	6/	404	257	25%	43	83	36	~~		
1	3880	6127.810	.98	6.3	425	256	253	43	176	88	10		
30	2480	433333											
v	51780	430.333	9.1	5.7	20/2	257	255	4/4	3.6	99	53		
17	1180	4/32,045	2./	21	hoh	256	157	hh	67	86	54		
2	1530	435.810	1.1	5:1	7007	958	151	54	67	8	80		
2	5530	438.525	1.0	H.1	804	256	252	45	98	10/	20		
)	6580	441.200	545	(.3	8017	727	252	94	88	101	~ ~ ~		
20	0903	443.868											
7	15000	898.814	4.2	2.1	80/7	255	452	Ch	200	103	25		
4	8060	059 9/1/2	1.1	5')	50%	256	255	4/7	36	10%	25		
6	0912	449.375	1.1	1.4	4017	757	256	ch	200	501	S		
2	2160	451.995	100	1.2	40%	258	285	47	56	1001	· S		
)	ogac	454.580	050	1.1	CIL	457	1254	273	56	103	3.6		
verage	70 Cag 24	Averagen Closial 4157, 163											

Master Document Storage\Forms\Datasheets\Field Datasheets

2.906

Comments: 196/20/0820=1.35/0,0911=1.3

Master Document Storage\Forms\Datasheets\Field Datasheets

101.5

08.5

77

1.300

1.0358

Comments:

WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET - STANDARD

CLIENT:	Desert View Power	AMBI
LOCATION: L	Unit 1 Stack Breaching	BARC
DATE: 9	9/ 3 /2020	ASSL
RUN NO:	7-HCL-U1	PITO
OPERATOR: F	Patrick Whitman	PROE
METER BOX NO:	29-WCS	PROE
METER AH@:	1.838	NOZZ
METER Yd:	1.009	NOZZ
STACK AREA, FT2	38.8	FILTE
TRAVERSE POINT	TRAVERSE POINTS, MIN/POINT: 4x30	PRE-
ΔH= X ΔP:		POST
Probe Condition, pre/post test:	re/post test:	PITO
Silica Gel Expanded, Y/N:	d, Y/N:	CHA
Filter Condition after Test	er Test/ /2 >	
Check Weight:	215	

SATURE ESSURI URE: FF, Cp: TERIAL ATERIA	0.84 # 75 6 6 DVP#10	Glass	
FILTER NO/TYPE: T PRE-TEST LEAK RATE: : _	Teflon Mat CFM@		Ë,
POST-TEST LEAK RATE: ;	CFM@		Ĭ.
PITOT LEAK CHECK - PRE:		POST:	
CHAIN OF CUSTODY: 8	SAMPLE CUSTODIAN	IAN	<u>}</u>
0,	SAMPLER		ĕ
0)	SAMPLE CUSTODIAN	IAN	2

Contents Post-Test - Pre-Test = Difference O.1N H2SO4 O.1N H2SO4 Empty Silica gel	- 50	
1 O.1N H2SO4 2 O.1N H2SO4 3 Empty 4 Silica gel	Rinse	Total:

		Meter	ΔP	PΛ	Stack	Probe	Filter	Imp. Out	Meter T	emp, °F	Vacuum	ő	P. static
Point	Time	Volume, ft ³	in. H ₂ O	in. H ₂ O	Temp, °F	Temp, °F	Temp, °F	Temp, °F	드	In Out		%	in. H ₂ O
V	290	457.163	200	1,3	69/7	253	256	8/1	400	1001	ν̈́ν		4.32
7	5000	1/59.600	25.	1.1	11/7	257	957	817	00/	104	۶.,		
cr	0933	510.7917	, & ¢	-	6112	358	222	817	101	1201	< >		
2	2937	464.410	. 83	1.1	4.10	152	255	47	103	106	5.7		
-	11750	466.725	-		1117	157	253	8/7	103	927	>		
0.0	2760	469.067											
is	9460	190.692	10	7.	413	150	752	6/2	401	801	24		
5	0360	471.680	1.1	و	11/5	253	256	48	401	80/	5.		
W	2954	C14,470	1-1	1.51	Wh	256	283	48	1001	≥0/	٧٧.		
4	2958	477.115	86.	.3	415	255	252	1/8	101	(28	> >		
_	2001	C89.6617	> 00 0	1.2	412	1752	255	8/7	103	801	5~		
20	1006	482.097											
v	1007	482.097	1.2	1.6	21/2	255	286	5/7	1001	109	, 5		
7	1101	565.484	1.1	9.	1113	h52	152	615	501	110	84		
60	5101	089.685	1.1	1.4	2117	957	258	87	501	108	5.5		
7	1019	440.34S	0./	1.3	413	358	257	4/6	104	108	۰۶٬		
	1013	492.900	65"	1.3	4/13	253	252	46	105	0//	5.5		
Average	F. Wn 1027	Averager Anhoz 7 495.404	<u>[</u>										

WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET - STANDARD

AMBIENT TEMPERATURE:	BAROMETRIC PRESSURE: 30.70	ASSUMED MOISTURE: 12.5	PITOT TUBE COEFF, Cp: 0.84	PROBE ID NO/MATERIAL: # 75 Glass	PROBE LENGTH: 6'	NOZZLE ID NO/ MATERIAL: DVP #1 Glass	NOZZLE DIAMETER: 0.221	FILTER NO/TYPE: Teflon Mat	PRE-TEST LEAK RATE:: 62005 CFM@ 15	POST-TEST LEAK RATE: : £0,005 CFM@ / 3	PITOT LEAK CHECK - PRE: POST	CHAIN OF CUSTODY: SAMPLE CUSTODIAN	SAMPLER	THE CONTRACTOR LINES OF THE CONTRACTOR OF THE CO
O CLIENT: Desert View Power	LOCATION: Unit 1 Stack Breaching	DATE: 9/10 /2020	RUN NO: 3 -HCL-U1	OPERATOR: Patrick Whitman	METER BOX NO: 29-WCS	METER ∆H@: 1.838	METER Yd: 1.009	STACK AREA, FT ² : 38.8	TRAVERSE POINTS, MIN/POINT: 4x30	AH= XAP:	Probe Condition, pre/post test: 7/	Silica Gel Expanded, Y/N:	Filter Condition after Test:	0 00 000

	1	^	\ n	1		ĩ	\sim
Imp. # Contents Post-Test - Pre-Test = Difference	0.1N H2SO4 979.1 774.1 205.2	70.7	0.6	Silica gel_ 757.5 9 39.1 17.4	15		243.3
= Dif	_	7	JI 	1-72		Ì	
e-Test	774.	0.1N H2SO4 8372 766.7	655. 6 655.0	23		20	
st - Pr	1	0	9	5		Ì	ľ
ost-Te	616	837.	655.	756.			
ts P.	2804	SO4		<u></u>			
conten	.1N H	.1N H	Empty_	silica g		Rinse	
p. #C			Ш	<i>s</i>	1	ا	Total:
<u>E</u>	7	2	က်	4			P

n. Hg.

MAN W

		Meter	ΔP	ЧΥ	Stack	Probe	Filter	Imp. Out	Meter T	Meter Temp, °F	Vacuum	o O	P. static
Point	Time	Volume, ft ³	in. H ₂ O	in. H ₂ O	Temp, °F	Temp, °F	Temp, °F	Temp, °F	드	Ont	in. Hg.	%	in. H ₂ O
V	1830	497.333	1.1	h]	2017	nsz	652	ch	001	783	24		F.32
X	1234	019.660	2.1) /	604	2.55	284	eld	101	500	Se		
2	8511	502,345	0.7	(.3	5017	286	255	461	100	401	2,		
2	2421	504.830	0.7	1.3	50h	253	150	17 /2	201	105	200		
_	9421	507.315	66.	1.3	clh	254	282	bh	101	201	Š		
RC	1250	509.802											
S	1251	509,802	1.0	- 6v	0/4	255	253	hh	701	401	*		
7	1255	SN.365	1.1	9.1	01/1	282	254	5/7	103	101	2,		
8	1259	061.813	1.1	1.6	114	253	285	5/5	(05	111	300		
h	1303	518.230	6.9	5.1	0/4	254	257	45	501	112	.,5		
	1307	520.555	, 9s	1.3	014	255	258	94	901	1/3	N,		
P. C.	1311	523.093											
n	1312	523.093	1.1	51	410	754	253	00s	101	7,11	* 5		
t	1316	525.800	67	6.7	Clls	256	253	54	(0)	112	5,		
2	1320	528.410	,93	1.3	01/5	257	255	24	8.01	7/1	570		
2	1324	530.940	180	1.1	17/3	456	p22	29.64	801	Me	2.5		
1	1328	533,265	080	1.0	410	257	252	49	101	2/1	54		
erage	P.C. 1332	Average C. 1332 S35. 592											
men	The sta	Comments. McFart 1130213	21.3/0	10 1258-1125						ナント	C 841.7	2/2	
5		3	1	10000								1	

Page

isheets\Field Datasheets

Master Document Storage\Forms\Datas
e 20 0 1

WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET – STANDARD

	aching								K30						
Desert View Power	Unit 1 Stack Breaching	9/00 /2020	3 -HCL-U1	Patrick Whitman	NO: 29-WCS	1.838	1.009	, FT ² : 38.8	TRAVERSE POINTS, MIN/POINT: 4x30	X ∆P:	Probe Condition, pre/post test:	anded, Y/N:	n after Test: 1 . 2 1 5	38	
CLIENT	LOCATION:	DATE:	RUN NO:	OPERATOR:	METER BOX NO:	METER AH@:	METER Yd:	STACK AREA, FT2:	TRAVERSE P	× HT=	Probe Condition	Silica Gel Expanded, Y/N.	Filter Condition after Test:	Check Weight:	
ነበ	121	2.2	:-7	'ጸር	ነበ.	4۶	-R	T.	-16	ЗO.	7				

	1 1	
i i i i i i i i i i i i i i i i i i i	Μď	
Glass Glass Post:		
12.5 0.84 # 75 Glass 6' 6' C.221 Teflon Mat CFM@ CFM@ CFM@	ER	1
AMBIENT TEMPERATURE: BAROMETRIC PRESSURE: ASSUMED MOISTURE: PITOT TUBE COEFF, CP: PROBE ID NO/MATERIAL: PROBE LENGTH: FOUZZLE DIAMETER: NOZZLE DIAMETER: OF FILTER NO/TYPE: FILTER NO/TYPE: FILTER NO/TYPE: COEFF, CP: OF CUSTORY SAMPIFO		

Imp. #Contents Post-Test - Pre-Test = Difference				2	7		
Imp. #Contents Pos	_1 0.1N H2SO4	_2 0.1N H2SO4	_3 Empty	_4 Silica gel	75	Rinse	Total:

i	P. static
	o O
	Vacuum
Total:	Meter Temp, °F
AM.	Imp. Out
STODIAN	Filter
SAMPLE CUSTODIA	Probe
	Stack
	PΛ
	ΔP
1031. 408	Meter
ו ט	

	P. static
	O
	Vacuum
Total:	Meter Temp, °F
DW	Imp. Out
STODIAN	Filter
SAMPLE CUSTODIAN	Probe
	Stack
	Ч∇
506 /	ΔP
200	Meter

_	_												_	_
P. static	in. H ₂ O	78.4												
02	%													
Vacuum	in. Hg.	26	5	50	53	د د		24	٧٧	* 5	54	5 60		
emp, °F	ont	107 1/2	///	111	112	1/1		1/3			113			
Meter 7	ㅁ	107	101	108	107	\$		101	Lai	107	(a)	101		
Imp. Out	Temp, °F	cs	18	2.5	5.3	53		45		\$\$	95	95		
Filter	Temp, °F	1256	256	955	256	550		256	256	252	253	256		
Probe	Temp, °F	753	25%	asy	253	754		253	454	253	255	256		
Stack		1117	0/10			Пh		01/2	CIH	0110	110	0110		1
Ч	in. H ₂ O	1.4	5.1	7.4	13	6.7		1.6	19	61	1.1	2		
ΔP	in. H ₂ O	0.7	1.1	0.1	. 98	1760		12	1.1	5.	0.1	693		
Meter	Volume, ft ³	535.592	538.275	540,995	543.720	546.360	548, 903	548.903	551.820	574.565	021.655	516.55	562.431	
	Time	1333	1337	1341	345	1349	1353	1354	358	704	9 0/1	0111	12/2	1
	Point	V	2	M	7	/	P.C.	N	7	(N	4	1	120	

300

801 000

108

52

957

255 256 256 256 256 256

410 11/2 11)

2

0

20.655 567.850

143

573,330

Average END 1435

Comments:

15:10

562.431

12/10/

5 WU

1252

ふじ

114

527

107

30

258

6.000

c/10.1

6.39

(270)

Date of last revision 2/14/2017

		1-1	1-HCL-UI						2-	2-HCL-U1						3.	3-HCL-UI			
	₽	(dP)^.5	HP	Ts	T	Tm		ф	(dP)^.5	HP	Ts	Tm	n		db.	(dP)^.5	HP	Ts	Tm	п
			·		i					,		;								
	1.50	1.140	9. [400	¥ 6	۶ ۶	o -	1.20	1.095	1.6	004	3 8	8 8	YO Y	1.10	1.049	1.4	408	100	103
* t	0 0%	0 000	2.7	400	7 5	į ;	, t		1.049	1.5	401	3 5	3 2	4 "	02.1	1.093	1.0	409	101	104
	1.00	1.000	1.3	400	72	75	. 2		1.000	1.4	404	93	7 %	2 2	00.1	1.000	1 1	409	8 9	105
	1.00	1.000	1.3	400	72	9/	T		0.990	1.3	402	94	86	-	0.97	0.985	1.3	410	101	106
5	1.20	1.095	1.5	400	73	1.1	5	1.10	1.049	1.5	403	96	66	'n	1.00	1.000	1.3	410	102	107
	1.30	1.140	1.6	400	73	78	4	1.20	1.095	1.6	404	26	66	4	1.20	1.095	1.6	410	103	107
	1.10	1.049	1.4	400	74	78	ω.		1.049	1.5	406	26	100	3	1.20	1.095	1.6	411	105	1111
2	1.00	1.000	1.3	400	75	79	2	1.00	1.000	1.4	408	86	101	2	1.00	1.000	1.4	410	105	112
1	86:0	0.660	1.3	399	76	80	1	0.95	0.975	1.3	408	86	102	1	0.95	0.975	1.3	410	106	113
	86.0	0.990	1.3	400	11	81	\$	1.20	1.095	1.6	408	86	103	5	1.10	1.049	1.5	410	107	112
	0.87	0.933	1:1	399	78	82	4	1.10	1.049	1.5	409	86	103	4	1.00	1.000	4.1	410	107	112
	0.83	0.911	1.1	399	78	84	ω.	1.10	1.049	1.4	409	86	104	æ	0.93	0.964	1.3	410	108	112
2	0.87	0.933	1.1	399	79	82	61		0.970	1.2	409	66	104	2	0.84	0.917	1.1	411	108	112
1	0.85	0.922	1.1	399	80	98	1	06.0	0.949	1.2	410	66	103	1	08.0	0.894	1.1	410	107	112
S	1.10	1.049	1.5	400	83	87	5		0.660	1.3	409	100	104	5	1.00	1.000	1.4	411	107	112
	1.20	1.095	1.6	400	84	88	4		0.959	1.2	411	100	104	4	1.10	1.049	1.5	410	107	1111
	1.00	1.000	1.4	400	82	68	3	98.0	0.927	1:1	410	101	104	3	1.00	1.000	1.4	410	108	1111
7	0.95	0.975	1.3	400	98	96	2	0.83	0.911	1:1	410	103	901	2	86.0	0.660	1.3	411	107	112
1 (0.92	0.959	1.2	401	85	96	1	0.81	0.900	1.1	411	103	107	1	0.94	0.970	1.3	411	108	112
	1.10	1.049	1.5	402	98	06	5		1.049	1.4	410	104	108	5	1.20	1.095	1.6	410	107	113
	1.00	1.000	1.4	403	98	91	4	1.20	1.095	1.6	411	104	108	4	1.10	1.049	1.5	410	107	114
	1.10	1.049	1.5	402	98	16	m	1.10	1.049	4.1	412	104	108	33	1.00	1.000	1.4	410	107	113
	1.20	1.095	1.6	401	87	91	2	86.0	0.990	1.3	412	104	108	2	1.00	1.000	1.4	410	107	113
1	86.0	0.090	1.3	400	87	92		0.95	0.975	1.2	412	103	108		0.93	0.964	1.3	410	107	113
	1.00	1.000	1.4	400	88	92	5		1.095	1.6	412	104	109	3	1.20	1.095	1.6	411	108	114
	1.20	1.095	1.6	400	88	65	4	1.20	1.095	1.6	413	105	110	4	1.00	1.000	1.4	411	108	114
	1.10	1.049	1.5	400	<u></u>	24	 	1.10	1.049	1.4	412	105	108	m	1.10	1.049	1.5	410	108	114
5	0.97	0.985	1.3	401	68	8	2	1.00	1.000	1.3	413	104	109	2	1.00	1.000	1.4	410	108	114
	0.95	0.975	1.3	400	96	48		0.97	0.985	1.3	413	105	110		0.92	0.959	1.2	410	107	113
Average		1.0308	1.363	400.1	87	82.9	Average		1.0358	1.380	408.5	101.5	Γ	Average		1.0227	1.390	410.1	108.3	[3
			Meter Vol	dwI	dwI					Meter Vol	1	durI					Meter Vol	dal	all	
Delta P (iwg)		1.031	339.51	983.7	764.7	219.0	Delta P (iwg)	vg)	1.036	417	Οί	677.1	239.7	Delta P (iwg)	20	1.023	497	979.1	774.1	205.0
Meter Pressure (iwg)	(iwg)	1.363	415.406	796.2	747.4	48.8	Meter Pressure (iwg)	sure (iwg)	1.380	495.404	722.9	696.2	26.7	Meter Pressure (iwg)	ure (iwg)	1.390	575.783	837.0	7.997	70.3
Stack Temperature (F)		400.133	75.896	624.9	654.2	0.7	Stack Tem	Stack Temperature (F)	408.500	78.404	508.4	505.2	3.2	Stack Temperature (F	erature (F	410.067	78.783	655.6	655	9.0
Meter Temperature (F)	ture (F)	82.917		1047.1	1033.1	14.0	Meter Ten	Meter Temperature (F)	101.467		963.9	934	29.9	Meter Temperature (F	erature (F	108.267		956.5	939.1	17.4
Meter Volume (acf)	(acf)	75.896			20	-50.0	Meter Volume (acf)	ume (acf)	78.404			50	-50.0	Meter Volume (acf)	ne (acf)	78.783			50	-50.0
Liquid Volume (ml)	(ml)	232.500				232.5	Liquid Volume (ml)	ume (ml)	249.500				249.5	Liquid Volume (ml)	me (ml)	243.3				243.3

Appendix A.2 Unit 2 Data

Appendix A.2.1 Unit 2 Sample Location

Client: Desert View Power

Date: 9/10/2020

Sample Location:

Unit 1-2

Prepared By: Dave Wonderly

	Point No.	Sample Point	
H (in.) 119.0			
	1	4.7	17.7
W (in.) 47.0	2	14.1	27.1
	3	23.5	36.5
Nipple length 13.0	4	32.9	45.9
	5	42.3	55.3
bistance between points 9.40			
Stack Area (ft^2) 38.84			
, ,			

Appendix A.2.2 Unit 2 CEM Data

Date	Time	O2 %	CO2 %	
9/9/2020	7:48	-0.01	0.02	
9/9/2020	7:49	16.72	16.19	
9/9/2020	7:50	19.14	18.97	
9/9/2020	7:51		18.95	High
9/9/2020	7:52	13.28	12.95	13
9/9/2020	7:53	10.51		Mid
9/9/2020	7:54	1.82	1.80	1
9/9/2020	7:55	-0.01	0.02	Zero
9/9/2020	7:56	7.24	7.46	
9/9/2020	7:57	10.48	10.54	O2 CO2 Bias
9/9/2020	7:58	7.22	6.63	
9/9/2020	7:59	0.03		Zero Bias
9/9/2020	8:00	2.77	5.03	
9/9/2020	8:01	8.83	11.55	
9/9/2020	8:02	8.94	11.50	
9/9/2020	8:03	8.48	11.87	
9/9/2020	8:04	8.86	11.68	
9/9/2020	8:05	8.75	11.71	
9/9/2020	8:06	8.32	12.12	
9/9/2020	8:07	8.65	11.77	
9/9/2020	8:08	8.89	11.62	
9/9/2020	8:09	8.62	11.87	
9/9/2020	8:10	9.11	11.28	
9/9/2020	8:11	8.39	12.05	
9/9/2020	8:12	8.98	11.47	
9/9/2020	8:13	8.55	11.90	
9/9/2020	8:14	9.05	11.33	
9/9/2020	8:15	8.21	12.39	
9/9/2020	8:16	8.01	12.39	
9/9/2020	8:17	8.14	12.21	
9/9/2020	8:18	8.23	12.28	
9/9/2020	8:19	7.71	12.73	
9/9/2020	8:20	8.21	12.14	
9/9/2020 9/9/2020	8:21 8:22	8.18 8.29	12.30 12.10	
9/9/2020	8:23	8.54	11.96	
9/9/2020	8:24	7.91	12.56	
9/9/2020	8:25	7.89	12.56	
9/9/2020	8:26	8.80	11.57	
9/9/2020	8:27	9.44	10.97	
9/9/2020	8:28	8.74	11.86	
9/9/2020	8:29	7.60	12.85	
9/9/2020	8:30	9.12	11.32	
9/9/2020	8:31	8.72	11.79	
9/9/2020	8:32	8.70	11.72	

9/9/2020	8:33	9.18	11.34
9/9/2020	8:34	8.88	11.68
9/9/2020	8:35	8.97	11.41
9/9/2020	8:36	9.68	10.92
9/9/2020	8:37	8.68	11.81
9/9/2020	8:38	8.65	11.77
9/9/2020	8:39	8.13	12.44
9/9/2020	8:40	9.21	11.19
9/9/2020	8:41	8.55	11.96
9/9/2020	8:42	8.48	12.02
9/9/2020	8:43	8.54	12.03
9/9/2020	8:44	7.98	12.52
9/9/2020	8:45	8.12	12.33
9/9/2020	8:46	7.92	12.61
9/9/2020	8:47	7.72	12.75
9/9/2020	8:48	8.71	11.63
9/9/2020	8:49	8.23	12.41
9/9/2020	8:50	8.31	11.98
9/9/2020	8:51	8.57	11.97
9/9/2020	8:52	7.63	12.95
9/9/2020	8:53	9.16	11.22
9/9/2020	8:54	9.43	11.06
9/9/2020	8:55	8.79	11.75
9/9/2020	8:56	8.81	11.61
9/9/2020	8:57	9.12	11.22
9/9/2020	8:58	8.89	11.56
9/9/2020	8:59	8.51	12.01
9/9/2020	9:00	8.22	12.19
9/9/2020	9:01	8.65	11.73
9/9/2020	9:02	8.50	12.03
9/9/2020	9:03	8.79	11.66
9/9/2020	9:04	9.01	11.42
9/9/2020	9:05	9.00	11.35
9/9/2020	9:06	9.32	11.19
9/9/2020	9:07	8.43	12.10
9/9/2020	9:08	8.26	12.22
9/9/2020	9:09	7.90	12.57
9/9/2020	9:10	8.97	11.42
9/9/2020	9:11	8.93	11.52
9/9/2020	9:12	8.46	11.89
9/9/2020	9:13	9.28	11.23
9/9/2020	9:14	8.81	11.67
9/9/2020	9:15	8.70	11.74
9/9/2020	9:16	8.50	11.97
9/9/2020	9:17	8.04	12.30
9/9/2020	9:18	8.49	11.98
9/9/2020	9:19	9.23	11.16

9/9/2020	9:20	9.40	11.09
9/9/2020	9:21	8.91	11.46
9/9/2020	9:22	9.33	11.06
9/9/2020	9:23	7.94	12.56
9/9/2020	9:24	8.18	12.23
9/9/2020	9:25	8.58	11.77
9/9/2020	9:26	8.43	12.07
9/9/2020	9:27	8.40	11.95
9/9/2020	9:28	9.35	10.97
9/9/2020	9:29	9.59	10.94
9/9/2020	9:30	9.14	11.36
9/9/2020	9:31	9.11	11.25
9/9/2020	9:32	9.21	11.15
9/9/2020	9:33	8.94	11.55
9/9/2020	9:34	8.56	11.92
9/9/2020	9:35	7.93	12.51
9/9/2020	9:36	8.86	11.54
9/9/2020	9:37	8.23	12.14
9/9/2020	9:38	8.28	12.09
9/9/2020	9:39	9.48	10.89
9/9/2020	9:40	9.22	11.16
9/9/2020	9:41	8.74	11.80
9/9/2020	9:42	8.99	11.39
9/9/2020	9:43	9.31	11.15
9/9/2020	9:44	8.18	12.25
9/9/2020	9:45	8.23	12.21
9/9/2020	9:46	8.61	11.79
9/9/2020	9:47	8.69	11.70
9/9/2020	9:48	8.24	12.24
9/9/2020	9:49	7.54	12.89
9/9/2020	9:50	8.39	12.07
9/9/2020	9:51	8.37	
			12.04
9/9/2020	9:52	9.38	11.02
9/9/2020	9:53	8.99	11.46
9/9/2020	9:54	8.97	11.56
9/9/2020	9:55	8.94	11.39
9/9/2020	9:56	9.36	11.08
9/9/2020	9:57	8.74	11.73
9/9/2020	9:58	8.94	11.52
9/9/2020	9:59	8.34	12.02
9/9/2020	10:00	8.42	12.09
9/9/2020	10:01	7.22	13.18
9/9/2020	10:02	7.76	12.65
9/9/2020	10:03	8.88	11.49
9/9/2020	10:04	8.39	12.07
9/9/2020	10:05	8.28	12.03
9/9/2020	10:06	8.70	11.74
5,5/2525	10.00	0.70	11.17

9/9/2020	10:07	8.62	11.75
9/9/2020	10:08	9.41	10.90
9/9/2020	10:09	9.77	10.65
9/9/2020	10:10	9.31	11.21
9/9/2020	10:11	7.95	12.33
9/9/2020	10:12	8.28	12.16
9/9/2020	10:13	7.63	12.72
9/9/2020	10:14	7.75	12.68
9/9/2020	10:15	7.18	13.19
9/9/2020	10:16	8.37	11.90
Run 1 Average		8.64	11.77
9/9/2020	10:17	2.31	2.06
9/9/2020	10:18	0.02	0.04 Zero Bias
9/9/2020	10:19	2.83	3.42
9/9/2020	10:20	10.43	10.42 O2 CO2 Bias
9/9/2020	10:21	3.96	4.07
9/9/2020	10:22	-0.01	0.02 Zero
9/9/2020	10:23	3.86	4.10
9/9/2020	10:24	10.47	10.49
9/9/2020	10:25	10.47	10.51 Span
9/9/2020	10:26	8.32	12.39
9/9/2020	10:27	6.47	13.92
9/9/2020	10:28	6.11	14.17
9/9/2020	10:29	6.58	13.77
9/9/2020	10:30	7.92	12.25
9/9/2020	10:31	9.09	11.32
9/9/2020	10:31	9.09 8.85	11.43
9/9/2020	10:32	9.51	10.95
9/9/2020	10:33	9.56	10.75
9/9/2020	10:34	8.69	11.75
9/9/2020	10:36	7.50	12.94
9/9/2020	10:37	7.45	12.89
9/9/2020	10:38	7. 4 5 7.26	13.02
9/9/2020	10:39	9.06	11.24
9/9/2020	10:39	9.73	10.52
9/9/2020	10:40	9.73 9.36	10.52
9/9/2020	10:41	8.33	12.04
9/9/2020	10:42	8.60	11.75
9/9/2020	10:44	8.88	11.75
9/9/2020	10:44	9.54	10.79
9/9/2020	10:46	10.21	10.79
9/9/2020	10:46		
		9.39	10.98
9/9/2020	10:48	9.18	11.19
9/9/2020	10:49	9.55	10.89
9/9/2020	10:50	8.58	11.77
9/9/2020	10:51	8.54	11.74
9/9/2020	10:52	9.34	10.86

9/9/2020	10:53	10.64	9.84
9/9/2020	10:54	10.75	9.49
9/9/2020	10:55	11.23	9.12
9/9/2020	10:56	11.40	9.02
9/9/2020	10:57	10.41	9.99
9/9/2020	10:58	9.88	10.48
9/9/2020	10:59	10.75	9.54
9/9/2020	11:00	11.53	8.66
9/9/2020	11:01	14.33	6.09
9/9/2020		14.33	6.32
	11:02 11:03		
9/9/2020		11.51	8.80
9/9/2020	11:04	11.22	9.02
9/9/2020	11:05	10.46	10.21
9/9/2020	11:06	8.37	11.91
9/9/2020	11:07	9.35	10.83
9/9/2020	11:08	10.63	9.78
9/9/2020	11:09	11.07	9.13
9/9/2020	11:10	11.79	8.54
9/9/2020	11:11	11.66	8.87
9/9/2020	11:12	11.11	9.30
9/9/2020	11:13	11.08	9.21
9/9/2020	11:14	12.49	7.79
9/9/2020	11:15	13.54	6.94
9/9/2020	11:16	12.06	8.47
9/9/2020	11:17	10.87	9.53
9/9/2020	11:18	9.94	10.45
9/9/2020	11:19	9.72	10.68
9/9/2020	11:20	8.38	12.05
9/9/2020	11:21	7.45	12.92
9/9/2020	11:22	6.85	13.46
9/9/2020	11:23	8.25	11.97
9/9/2020	11:24	9.38	10.88
9/9/2020	11:25	9.56	10.89
9/9/2020	11:26	8.86	11.53
9/9/2020	11:27	8.16	12.16
9/9/2020	11:28	7.57	12.80
9/9/2020	11:29	8.05	12.21
9/9/2020	11:30	8.86	11.42
9/9/2020	11:31	8.69	11.64
9/9/2020	11:32	8.17	12.20
9/9/2020	11:33	8.72	11.59
9/9/2020	11:34	9.07	11.17
9/9/2020	11:35	8.43	11.96
9/9/2020	11:36	6.83	13.54
9/9/2020	11:37	6.61	13.69
9/9/2020	11:38	7.84	12.35
9/9/2020	11:39	9.27	10.90
31312020	11.05	3.21	10.90

9/9/2020	11:40	9.06	11.16
9/9/2020	11:41	8.12	12.23
9/9/2020	11:42	8.14	12.22
9/9/2020	11:43	8.62	11.59
9/9/2020	11:44	8.81	11.43
9/9/2020	11:45	8.52	11.88
9/9/2020	11:46	8.87	11.38
9/9/2020	11:47	8.25	12.07
9/9/2020	11:48	9.02	11.34
9/9/2020	11:49	8.99	11.29
9/9/2020	11:50	8.98	11.32
9/9/2020	11:51	8.56	11.83
9/9/2020	11:52	8.36	12.00
9/9/2020	11:53	8.40	11.92
9/9/2020	11:54	8.66	11.71
9/9/2020	11:55	7.86	12.49
9/9/2020	11:56	7.93	12.41
9/9/2020	11:57	8.21	12.15
9/9/2020	11:58	8.11	12.24
9/9/2020	11:59	9.08	11.25
9/9/2020	12:00	8.66	11.60
9/9/2020	12:01	8.24	12.11
9/9/2020	12:02	8.27	11.96
9/9/2020	12:03	8.56	11.84
9/9/2020	12:04	8.72	11.56
9/9/2020	12:05	8.67	11.60
9/9/2020	12:06	7.96	12.47
9/9/2020	12:07	8.29	11.97
9/9/2020	12:08	8.06	12.25
9/9/2020	12:09	8.85	11.31
9/9/2020	12:10	8.48	11.90
9/9/2020	12:11	8.30	12.08
9/9/2020	12:12	7.86	12.34
9/9/2020	12:13	8.28	12.02
9/9/2020	12:14	8.12	12.11
9/9/2020	12:15	9.00	11.29
9/9/2020	12:16	8.85	11.35
9/9/2020	12:17	8.65	11.68
9/9/2020	12:18	8.30	12.03
9/9/2020	12:19	8.98	11.20
9/9/2020	12:20	8.84	11.41
9/9/2020	12:21	9.07	11.22
9/9/2020	12:22	8.62	11.62
9/9/2020	12:23	8.67	11.52
9/9/2020	12:24	8.63	11.74
9/9/2020	12:25	7.73	12.52
9/9/2020	12:26	8.72	11.52

9/9/2020	12:27	8.61	11.73	
9/9/2020	12:28	8.47	11.72	
9/9/2020	12:29	8.69	11.59	
9/9/2020	12:30	8.76	11.52	
9/9/2020	12:31	8.23	11.98	
9/9/2020	12:32	9.29	10.93	
9/9/2020	12:33	8.37	11.89	
9/9/2020	12:34	8.83	11.50	
9/9/2020	12:35	7.99	12.32	
Run 2 Average		8.48	11.81	1
9/9/2020	12:36	10.03	10.38	
9/9/2020	12:37	10.34	10.47	O2 CO2 Bias
9/9/2020	12:38	3.08	2.47	
9/9/2020	12:39	0.01	0.05	Zero Bias
9/9/2020	12:40	9.18	9.26	1-0.0 - 0.0
9/9/2020	12:41	10.42	10.53	Span
9/9/2020	12:42	1.44	1.23	Оран
9/9/2020	12:43	-0.03	0.02	Zero
9/9/2020	12:44	0.02	0.02	2610
9/9/2020	12:45	8.39	11.67	
9/9/2020	12:46	8.49	11.73	
9/9/2020	12:47	8.61	11.74	
9/9/2020	12:48	8.16	11.74	
9/9/2020	12:49	7.83	12.60	
9/9/2020	12:50	8.06	12.00	
9/9/2020	12:51	8.24	12.22	
9/9/2020	12:52	9.05	11.27	
9/9/2020	12:53	8.70	11.59	
9/9/2020	12:54	8.64	11.64	
9/9/2020	12:55	8.68	11.58	
9/9/2020	12:56	8.68	11.71	
9/9/2020	12:57	8.64	11.59	
9/9/2020	12:58	8.00	12.38	
9/9/2020	12:59	8.39	11.81	
9/9/2020	13:00	8.58	11.65	
9/9/2020	13:01	8.76	11.63	
9/9/2020	13:02	8.85	11.46	•
9/9/2020	13:03	8.76	11.46	
9/9/2020	13:04	8.78	11.55	
9/9/2020	13:05	8.54	11.72	
9/9/2020	13:06	8.03	12.27	
9/9/2020	13:07	8.21	12.05	
9/9/2020	13:08	8.69	11.53	
9/9/2020	13:09	8.58	11.76	
9/9/2020	13:10	7.97	12.28	
9/9/2020	13:11	8.13	12.12	
9/9/2020	13:12	8.26	12.01	
				

9/9/2020	13:13	9.44	10.78
9/9/2020	13:14	8.71	11.67
9/9/2020	13:15	8.28	11.97
9/9/2020	13:16	7.84	12.45
9/9/2020	13:17	7.76	12.48
9/9/2020	13:18	9.23	11.10
9/9/2020	13:19	8.38	11.83
9/9/2020	13:20	8.53	11.74
9/9/2020	13:21	7.86	12.49
9/9/2020	13:22	8.27	11.89
9/9/2020	13:23	8.88	11.37
9/9/2020	13:24	8.49	11.79
9/9/2020	13:25	8.74	11.52
9/9/2020	13:26	8.81	11.50
9/9/2020	13:27	8.35	11.88
9/9/2020	13:28	8.79	11.44
9/9/2020	13:29	7.93	12.31
9/9/2020	13:30	8.53	11.71
9/9/2020	13:31	8.62	11.63
9/9/2020	13:32	8.67	11.56
9/9/2020	13:33	8.89	11.35
9/9/2020	13:34	9.09	11.11
9/9/2020	13:35	8.50	11.79
9/9/2020	13:36	8.52	11.72
9/9/2020	13:37	8.73	11.58
9/9/2020	13:38	8.62	11.49
9/9/2020	13:39	8.25	12.03
9/9/2020	13:40	8.62	11.57
9/9/2020	13:41	8.86	11.49
9/9/2020	13:42	8.40	11.86
9/9/2020	13:43	8.64	11.56
9/9/2020	13:44	8.51	11.71
9/9/2020	13:45	8.60	11.63
9/9/2020	13:46	8.38	11.95
9/9/2020	13:47	8.66	11.55
9/9/2020	13:48	9.00	11.27
9/9/2020	13:49	8.31	11.88
9/9/2020	13:50	9.38	10.87
9/9/2020	13:51	8.47	11.73
9/9/2020	13:52	8.47	11.72
9/9/2020	13:53	8.38	12.04
9/9/2020	13:54	7.42	12.77
9/9/2020	13:55	8.30	12.00
9/9/2020	13:56	7.98	12.22
9/9/2020	13:57	8.90	11.28
9/9/2020	13:58	8.64	11.61
9/9/2020	13:59	8.00	12.32

9/9/2020	14:00	8.99	11.10
9/9/2020	14:01	8.40	11.95
9/9/2020	14:02	8.07	12.10
9/9/2020	14:03	8.81	11.46
9/9/2020	14:04	8.46	11.79
9/9/2020	14:05	8.36	11.79
9/9/2020	14:06	9.17	11.08
9/9/2020	14:07	8.67	11.54
9/9/2020	14:08	9.18	11.05
9/9/2020	14:09	8.10	12.26
9/9/2020	14:10	7.61	12.55
9/9/2020	14:11	8.41	11.84
9/9/2020	14:12	9.10	11.10
9/9/2020	14:13	8.58	11.70
9/9/2020	14:14	8.57	11.63
9/9/2020	14:15	7.63	12.60
9/9/2020	14:16	8.32	11.93
9/9/2020	14:17	7.59	12.73
9/9/2020	14:18	8.12	12.01
9/9/2020	14:19	8.88	11.27
9/9/2020	14:20	8.80	11.48
9/9/2020	14:21	8.30	11.99
9/9/2020	14:22	7.85	12.47
9/9/2020	14:23	8.14	12.01
9/9/2020	14:24	8.48	11.78
9/9/2020	14:25	8.25	11.96
9/9/2020	14:26	9.39	10.83
9/9/2020	14:27	9.28	10.95
9/9/2020	14:28	8.02	12.29
9/9/2020	14:29	8.58	11.66
	-		
9/9/2020	14:30	8.55	11.59
9/9/2020	14:31	8.18	12.15
9/9/2020	14:32	7.80	12.31
9/9/2020	14:33	8.48	11.75
9/9/2020	14:34	8.34	11.90
9/9/2020	14:35	8.24	11.92
9/9/2020	14:36	8.40	11.88
9/9/2020	14:37	8.85	11.37
9/9/2020	14:38	9.13	11.08
9/9/2020	14:39	8.96	11.28
9/9/2020	14:40	8.48	11.86
9/9/2020	14:41	7.86	12.24
9/9/2020	14:42	8.38	11.91
9/9/2020	14:43	7.92	12.34
9/9/2020	14:44	7.65	12.55
9/9/2020	14:45	8.82	11.45
9/9/2020	14:46	8.72	11.44

9/9/2020	14:47	8.47	11.77	
9/9/2020	14:48	9.19	10.98	
9/9/2020	14:49	9.17	11.00	
9/9/2020	14:50	8.34	12.00	
9/9/2020	14:51	8.43	11.70	
9/9/2020	14:52	8.92	11.35	
Run 3 Average		8.47	11.76	
9/9/2020	14:53	7.81	12.48	
9/9/2020	14:54	8.02	11.36	
9/9/2020	14:55	9.89	10.35	O2 CO2 Bias
9/9/2020	14:56	8.58	8.17	5) -2
9/9/2020	14:57	0.01	0.08	Zero Bias
9/9/2020	14:58	1.32	1.90	<u></u>
9/9/2020	14:59	10.24	10.44	O2 CO2 Bias
9/9/2020	15:00	4.28	4.39	
9/9/2020	15:01	-0.03	0.02	Zero
9/9/2020	15:02	3.61	3.93	ы
9/9/2020	15:03	10.30	10.52	
9/9/2020	15:04	10.30	10.53	Span
9/9/2020	15:05	17.64	17.70	50
9/9/2020	15:06	18.78	18.88	High

Appendix A.2.3 Unit 2 Instrument Strip Charts

SPAN GAS RECORD

CLIENT/LOCATION: Desert View Power DATE: 9/9/2020

Unit 2 BY: DW

	MID SPAN CYLINDER		HIGH SPAN CYLINDER	
	CYLINDER NO.	CONCENTRATION	CYLINDER NO.	CONCENTRATION
ZERO	CC88043	0.00		
O ₂	DT0022871	10.48	DT0011386	19.15
CO ₂	DT0022871	10.48	DT0011386	18.94

W002AS-789048-RT-1697

Print Groups Print Range Comment Signature1 Signature2 Signature3

No Sig. No Sig. No Sig.

W002AS-789048-RT-1697

Appendix A.2.4 Unit 2 Hydrogen Chloride Data

Comments: Mutol

T CH	WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET - STANDARD	T – STANDARD
	AMBIENT TEMPERATURE: 8/7/	Imp. #Contents
	BAROMETRIC PRESSURE: 30.05	•
	ASSUMED MOISTURE: 12.5	_1_ O.1N H2S(
	PITOT TUBE COEFF, Cp: 0.84	ļ
	PROBE ID NO/MATERIAL: # 75 Glass	2 0.1N H2S
	PROBE LENGTH: 6'	Ī
	NOZZLE ID NO/ MATERIAL: DVP #1 Glass	3 Empty
	NOZZLE DIAMETER: 0.221	
	FILTER NO/TYPE: Teflon Mat	4 Silica gel
	∠ / ≥ / ≥ / ≥ / ≥ / ≥ / ≥ / ≥ / ≥ / ≥ /	
	POST-TEST LEAK RATE: (20,000 CFM@ 15 in. Hg.	
	CHAIN OF CUSTODY: SAMPLE CUSTODIAN DW	Rinse
	SAMPLER	
	SAMPLE CUSTODIAN DW	Total:

	حد					
ifference	257.	7. ((-)	25.5	55	237.7
re-Test = [8. KJ	1.399	2087	4.396	50	18
ost-Test - P	458.4	675.2	509.5 5082	1932 2864		
Imp. # Contents Post-Test - Pre-Test = Difference	0.1N H2SO4 928. 4 674.6 257	0.1N H2SO4 675. 2 668.1	Empty	Silica gel	Rinse	
lmp.#	_[12	ω <mark> </mark>	4		Total:

		Meter	ΔP	Ч	Stack	Probe	Filter	Imp. Out	Meter T	emb, °F		o O	P. static
Point	Time	Volume, ft ³	in. H ₂ 0	in. H ₂ O	Temp, °F	Temp, °F	Temp, °F	Temp, °F	드	Ont		%	in. H ₂ O
V	000	187.190	0,1	1:1	375	252	1254	CS	58	78			4.30
2	200	2775	86.	1.1	376	455	852	53	96	83			
8	8180	87.330	563	0.1	376	254	259	50	700	98 78	5%		
2	2230	84.885	\$6,	67	374	456	255	49	h%	94			
_	9280	92.150	160	1.	3/8	754	457	84	83	85	50		
₿,	0830	194.634							3.				
N	0831	129.461	1.1	13	373	550	152	2/2	83	85	, 8		
5	0835	197.555	(.3	57	374	957	253	202	S) W	رچ	5.4		
87	2839	200.000	1.1	67	373	258	286	35	380	00 0/2	55		
62	2873	102.975	0.	(٠٠)	37%	255	253	hh	S	28	~ >		
	Ch36	205.280	.93	6)	373	1251	254	45	88	89	50		
12C	5.80	207.747											
v	2580	CHC-COE	05.	Š	373	284	253	hh	88	50	23		
5	9580	210.330	\$88	98	372	358	255	ds	89	65	5%		
a	0000	212.600	283	66	373	255	256	5/3	86	80	75		
2	4060	215.025	\$ P	36.	372	28	258	24	60	15	۷,		
_	8060	217.380	1,50,0	0.7	373	252	452	2/2	88	16	2.5		
erage	2160173	Average (2.19912 219.893											
8	W.	a 10%	1=cost	9/	084K=1.15/0085K=1.9	SXII N		2.917 110t	716.	\ \			
Collination.	120.	100	200	1	1	111111111111111111111111111111111111111			3	0			Î

METER BOX NO: OPERATOR:

17-WCS

Patrick Whitman

-HCL-U2

МЕТЕК ДН®: 1.449
МЕТЕК Yd: 0.984
STACK AREA, FT²: 38.8
TRAVERSE POINTS, MIN/POINT: 4x30

X ∆P:

c'acy

Desert View Power Unit 2 Stack Breaching 9/ 9 /2020

LOCATION DATE: RUN NO:

	t ≍ Differe				4	-	_	~								P. sta
	- Pre-Tes					7	1	2100	5			ĺ	22			02
	Post-Test		90		104			1	7	,						Vacuum
STANDARD	lmp. # Contents Post-Test - Pre-Test ≍ Differe		1 0.1N H2SO4		2 0.1N H2SO4		3 Empty		4 Silica gel) 			Rinse		Total:	Meter Temp, °F
WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET – STANDARD										in. Hg.	in. Hg.		DW	PW	MQ	Imp. Out M
ATA AND WO	0	16614J	2	4	75 Glass		DVP #1 Glass	21		CFM@ ir	CFM@ ir	POST:				Filter
YSTEM DA	ڹڹ		125	. 0.84	#	Ø,		0.221	Teflon Mat	P		Æ:	SAMPLE CUSTODIAN	SAMPLER	SAMPLE CUSTODIAN	Probe
SAMPLING S	ENT TEMPERATURE:	BAROMETRIC PRESSURE:	ASSUMED MOISTURE:	TUBE COEFF, Cp:	E ID NO/MATERIAL:	E LENGTH:	NOZZLE ID NO/ MATERIAL:	NOZZLE DIAMETER:	FILTER NO/TYPE:	TEST LEAK RATE:	POST-TEST LEAK RATE:	PITOT LEAK CHECK - PRE:	N OF CUSTODY:			Stack
CHEMICAL	AMBIEN	BAROME	ASSUME	PITOT TU	PROBE	PROBEL	NOZZLE	NOZZLE	FILTER N	PRE-TES	POST-TE	PITOT LE	CHAINO			H∇
WET	wer	. Breaching			u	SS				r: 4x30		in	1.1	1621	/	ΔP
	Desert View Power	Unit 2 Stack Breaching	9/ 9 /2020	I -HCL-U2	Patrick Whitman	17-WCS	1.449	0.984	2: 38.8	TS, MIN/POINT		re/post test:	3d, Y/N:	er Test: / 12	6	Meter
	CLIENT:	 N.C	DATE:	RUN NO:	OPERATOR: I	METER BOX NO:	METER AH@:	METER Yd:	STACK AREA, FT2:	TRAVERSE POINTS, MIN/POINT: 4x30	ΔH= X ΔP:	Probe Condition, pre/post test:	Silica Gel Expanded, Y/N:	Filter Condition after Test:	Check Weight:	

	Meter	er	ΔР	Ч	Stack	Probe	Filter	Imp. Out	Meter T	emp, °F	Vacuum	ő	P. static
Point Tir	Time Volume, ft ³	le, ft³	in. H ₂ O	in. H ₂ O	Temp, °F	Temp, °F	Temp, °F	Temp, °F	<u>u</u>	ln Out	in. Hg.	%	in. H ₂ O
5160	3 919.843	43	1.0	1.2	373	754	255	47	05	25	20		+30
1 0917	17 222. 525	525	1.1	6,7	374	988	255	87	12	93	ال		
1260	11 225,180	80	36°	1.2	375	253	254	35	62	63	M		
.60	0925 127.888	88	176"	1.1	373	282	256	\$8	83	55	1,5		
2929		15	6	1.1	12.5°	252	251	15	63	65	5,4		
P.C. 0933	33 233.128	28											
5 6035	15 233.128	28	1.1	6.1	273	25 Y	250	15	26	1,56	5-5		
0639		280	1.2	5.7	374	255	422	25	93	650	نځء		
5,000	0 738 840	340	1.1	1.4	372	252	258	52	46	.96	3 "		
1 0947	17 241,770	20	-:	1.7	373	486	25H	65	.95	96	5		
1560	51 244.675	575	6:	1.3	274	255	454	53	96	63	50		
C. 095	h9hicht ssbo	191											
360	299 C 247.464	1.9	1.0	6.1	376	284	757	56	35	25	50		
1000	0 250.365	59	1.1	1.9	375	256	1.55	5.5	96	65	5~		
1001	4 283.170	10	1.1	1.5	374	457	754	56		65	٧.		
1008	8 256.200	00	1.1	4.4	373	255	256	27	62	98	5.		
1012	259.065	52(20	7.9	373	754	455	58	88	98	5.		
age:ND	Average: ND 1016 261.864	64	(10)	1.201	C. 7 7.7				501				

5

9

Lector (1080=1.115/10/102=1.2

Comments:

WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET - STANDARD

									in. Hg.	in. Hg	7	ΔV	ΡW	ΔW
				Glass		Glass			N	V	POST:	DIAN		DIAN
J030/	30.03	12.5	0.84	# 75 Glass	6,	DVP #1 Glass	0.221	//at	(2,005 CFM®	CFM®	7	SAMPLE CUSTODIAN	ER	SAMPLE CUSTODIAN
	ij					AL:	Į	Teflon Mat	22,005	POST-TEST LEAK RATE: (20005 CFM®		SAMPL	SAMPLER	SAMPL
AMBIENT TEMPERATURE:	BAROMETRIC PRESSURE:	TURE:	PITOT TUBE COEFF, Cp:	PROBE ID NO/MATERIAL:	÷	NOZZLE ID NO/ MATERIAL:	TER:	iii	(RATE:	IK RATE :	PITOT LEAK CHECK - PRE:	ODY:		
IT TEMP	ETRIC P	ASSUMED MOISTURE:	TUBE CO	ID NO/M	PROBE LENGTH:	NOV OI =	NOZZLE DIAMETER:	FILTER NO/TYPE:	PRE-TEST LEAK RATE:	EST LEA	EAK CH	CHAIN OF CUSTODY:		
AMBIEN	BAROM	ASSUM	PITOT	PROBE	PROBE	NOZZLI	NOZZLI	FILTER	PRE-TE	POST-T	PITOT [CHAIN		

	$\overline{}$						
fference	222	32.3	9.	23.7		255	231.3
re-lest = Di	762.7	2.456	(53.4	h.600h		50	
'ost- i est - P	4.586	788.	655.0 (83.4	1033.			
imp. # Contents Post-Test - Pre-Test = Difference	0.1N H2SO4 785.4 7627 222)	2 0.1N H2SO4 788-(754.8	Empty	_4_ Silica gel {		Rinse	
# .dul	<u>- </u>	2	ا ا	4			Total:

11 Time 1030 1030 1034 1034 1054 6 1050 1050 1050 1055 1055		ΔР	₽	Stack	Probe	Filter	Imp. Out	Meter T	Meter Temp, °F	Vacuum	ő	P. static
1030 1036 1036 1050 1050 1050	Volume, ft ³	in. H ₂ O	in. H ₂ O	Temp, °F	Temp, °F	Temp, °F	Temp, °F	u	Ont	in. Hg.	%	in. H ₂ O
1036 1046 1050 1050 1051	005498	07	6.3	375	251	252	es.	101	100	277		1.30
1038 1046 1050 1050 1050	967.300)./	1.11	374	252	452	147	102	(03	54		
250 50 50 270 270	270.079	7.1	5.1	45	1251	254	2/7	103	401	5.4		
050 050 050 050	273,380	1.1	1.7	374	252	552	43	[b3-	501	5.4		
050	2760 255	0,	ů.	323	1251	256	43	103	20/	56		
1051	979.051											
	129.051	1.1	1,7	372	253	hsz	44	101	100	5"		
Ī	282.070	7:1	5.5	373	754	257	77	104	901	S		
2 05%	285. 40	0.	.3	373	256	254	54	104	261	35		
5011 7	288.000	1.1	1.3	324	258	285	415	103	101	· V		
1107	290.780	1.0	21	273	758	452	96	201	701	Ś		
ここ (2) 1 1 1 1 1 1 1 1 1	193.572											
2111	293.57r	0.1	7:1	374	455	752	47	401	9.0)	5		
9111 4	cer.966	85.	1.7	375	454	25.3	111	103	105	N N		
3 1140	199.185	56"	<i>[·]</i>	373	2SC	253	95	401	901	<i>کر</i> ۔		
101 2	301.790	. 93	1.1	372	957	15H	95	100	96)	2,		
1/18	304,365	060	1.0	373	257	282	7/7	1001	701	23		
Average (C) 1/9/	306.857											

85 of 265

Master Document Storage\Forms\Datasheets\Field Datasheets

Date of last revision 2/14/2017

WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET - STANDARD

CLIENT:	AMBIENIT TEMBE
ä	BAROMETRIC PR
	ASSUMED MOIST
RUN NO: 2 -HCL-U2	PITOT TUBE COE
OPERATOR: Patrick Whitman	PROBE ID NO/MA
METER BOX NO: 17-WCS	PROBE LENGTH:
METER △H@: 1.449	NOZZLE ID NO/ M
METER Yd: 0.984	NOZZLE DIAMETE
STACK AREA, FT ² : 38.8	FILTER NO/TYPE
TRAVERSE POINTS, MIN/POINT: 4x30	PRE-TEST LEAK!
ΔH= X ΔP:	POST-TEST LEAK
Probe Condition, pre/post test:	PITOT LEAK CHE
Silica Gel Expanded, Y/N:	CHAIN OF CUSTO
Filter Condition after Test: 926	
Check Weight:	

1/1/	161			5 Glass		DVP #1 Glass			a in. Hg.	a) in. Hg.	POST:	TODIAN DW	PW	TODIAN DW
AMBIENT TEMPERATURE:	BAROMETRIC PRESSURE:	ASSUMED MOISTURE: 12.5	PITOT TUBE COEFF, Cp: 0.84	PROBE ID NO/MATERIAL: # 75	PROBE LENGTH: 6'	NOZZLE ID NO/ MATERIAL: DVP :	NOZZLE DIAMETER: 0.221	FILTER NO/TYPE: Teflon Mat	PRE-TEST LEAK RATE: CFM@	POST-TEST LEAK RATE: CFM@	PITOT LEAK CHECK - PRE:	CHAIN OF CUSTODY: SAMPLE CUSTODIAN	SAMPLER	SAMPLE CUSTODIAN_

Imp. #Contents Post-Test - Pre-Test = Difference			- Car	18 m		50	
Imp. # Contents Pos	_1 0.1N H2SO4	_2 0.1N H2SO4	_3 Empty	_4 Silica gel <	,	Rinse	Total:

	Meter	ΔP	ЧΖ	Stack	Probe	Filter	Imp. Out	Meter T	Meter Temp, °F		o O	P. static
Time	Volume, ft ³	in. H ₂ O	in. H ₂ O	Temp, °F	Temp, °F	Temp, °F	Temp, °F	므	Ont	in. Hg.	%	in. H ₂ O
1133	306.857	75	1.1	373	954	256	54	1201	601			1,30
1137	309-470	63	0.	374	255	LSD	24	124	201	5		
1/7/1	311.925	, 85	0.7	374	956	251	5/5	hick	901	23		
ShII	314.360	.82	89.0	375	252	252	74	(02	201	, N		
6/11	316.820	.80	36.	374	155	453	45	5.0.1	901	24		
1/53	319.262											
1154	319.162	1.1	7	375	452	252	24	50)	101	3.6		
3511	322.160	<u>5</u>	9.1	314	256	253	d)	105	107	5,		
1021	345.275	1.1	22	375	258	255	417	135	107	200		
2011	328.472	0,	1.7	375	952	454	47	401	101	2,4		
1210	331.015	176"	1.1	374	252	25.6	8/7	104	901	Š		
1214	333.524											
1215	333.524	1.1	6.7	372	254	258	49	104	901	54		
1219	336.410	0:/	1,1	373	255	452	49	1001	106	5.4		
123	339.350	1.0	1.1	373	952	452	65	103	201	23		
1221	341,955	1.1	1,3	1374	257	52	52	104	Lal	<u>ل</u>		
123	344, 840	.95	1.1	375	255	452	50	1201	108	کز.		
527 CN3	Average END 135 347.39/	1.6170	1.231	373.7				104.8				

ET – STANDARD	Imp. # Contents Post-Test - Pre-Test = Diff	1 01NH2SO4 936.6 692.6		2 0.1N H2SO4 717. C104.8		3 Empty . 5/02 507. (4 Silica gel 955 92/.7			
WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET - STANDARD		BAROMETRIC PRESSURE: 360.03 ASSIMED MOISTIRE: 12.5	ö	PROBE ID NO/MATERIÀL: # 75 Glass	PROBE LENGTH: 6'	NOZZLE ID NO/ MATERIAL: DVP #1 Glass	NOZZLE DIAMETER; 0.221	FILTER NO/TYPE: Teflon Mat	PRE-TEST LEAK RATE: 62.025CFM@ /< in. Hg.	POST-TEST LEAK RATE: 20-かっく CFM@ / 5 in. Hg.	PITOT LEAK CHECK - PRE: POST:
WET		ching							Õ	_	

244,0

#Contents Post-Test - Pre-Test = Difference

17.2

100000000000000000000000000000000000000		
. METER ΔH@: 1.449	NOZZLE ID NO/ MATERIAL: DVP #1 Glass	3 Empty : 5/02 507. (2.7
WETER Yd: 0.984	NOZZLE DIAMETER; 0.221	
T STACK AREA, FT2: 38.8	FILTER NO/TYPE: Teflon Mat	4 Silica gel 9551 921.7 33.4
5 TRAVERSE POINTS, MIN/POINT: 4x30	YTE:	
X∆P: 94	POST-TEST LEAK RATE: (20.005 CFM@ / 5 in. Hg.	
Probe Condition, pre/post test: 1//	PITOT LEAK CHECK - PRE: POST: V	
Silica Gel Expanded, Y/N: V	CHAIN OF CUSTODY: SAMPLE CUSTODIAN DW	Rinse 50
Filter Condition after Test:	SAMPLER PW	
Check Weight: 500.0/500.0	SAMPLE CUSTODIAN DW	Total: 2 4 2 ′
65		

	Meter Volume, ft ³	∆P in. H₂O		In. H ₂ O	Stack Temp, °F	Probe Temp, °F	Filter Temp, °F	Imp. Out Temp, °F	Meter 7	Meter Temp, °F	Vacuum in. Hg.	% 0	P. static in. H ₂ O
1251 353.375 1.4 372	1,4 1,2			202	\ \	455	253	43	200	50 m	Ň Ĺ		4.30
2, 0,	7.0	1.2		374		286	257	12/7	901	108	Š		
1259 358.443 1.0 1.2 375	1.0 1.2	1.7		375	,,	157	255	hh	105	101	> .		
1303 361,725 ,95	- 55*	1-1	15	37	3	158	255	カカ	401	60	50		
P.C. 1807 364 284	364 284												
358 364.284 1.2 1.4 328	1.2 1.4	1.4		378	1.	255	283	77	1001	301	2 4		
1312 367.250 1.1 1.3 378	F.1 1.3			378	2	H32	255	77	501	101	25		
1316 270.115 1.1 1.3 379	6.1 1.3			37°		255	254	17/2	901	801	20		
088 1.1 66, 272.451 0181	1-1 660	1-1		380		1254	256	45	201	108	24		
1324 375,780 494 1, 381	1,1 7,6"	T I'I	188 11	38		255	452	45	101	601	26		
6.4. 1328 378.413	378.413												
1319 378413 .89 [1] 382	[-]	[-]	186 11	381		7254	256	26	101	123	2 %		
1333 381.110 687 1.0 383	691 10	0,1		383		185	722	47	801	1/0	ν		
1337 783.635 ,85	0 58,	Ç		381		255	754	47	Col	0//	53		
138 386,270 83 89 451	1,83	55'		381		25H	257	25	401	0//	£S.		
1345 388.765 855 1.0 382	C) 58°	Ó		385		253	258	85	Las	110	کر		
Average P.C. 134(9) 371.276	9 39.276												
Comments: Kachor @ 1245=1.2	chor0 1245=1.2	2,2						7	tuz 693.9	3.5			

METER BOX NO: OPERATOR:

17-WCS

Patrick Whitman

-HCL-U2

RUN NO: DATE:

Desert View Power Unit 2 Stack Breaching

Unit 2 Stack 9/ 9 /2020

LOCATION

WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET – STANDARD

CLIENT: Desert View Power	AMBIENT TEMF
LOCATION: Unit 2 Stack Breaching	BAROMETRIC
3	ASSUMED MOI
RUN NO: 3 -HCL-U2	PITOT TUBE CO
OPERATOR: Patrick Whitman	PROBE ID NO/
METER BOX NO: 17-WCS	PROBE LENGT
METER ∆H@: 1.449	NOZZLE ID NO
METER Yd: 0.984	NOZZLE DIAME
STACK AREA, FT ² ; 38.8	FILTER NO/TYF
TRAVERSE POINTS, MIN/POINT: 4x30	PRE-TEST LEA
ΔH= X ΔP:	POST-TEST LE
Probe Condition, pre/post test:	PITOT LEAK CH
Silica Gel Expanded, Y/N:	CHAIN OF CUS
Filter Condition after Test:	
Check Weight:	

0.3							in. Hg.	in. Hg.		DW	PW	MQ
RATURE:	FF, Cp: 0.84	TERIÁL: # 75 Glass	ŵ	ATERIAL: DVP #1 Glass	ER: 0.221	Teflon Mat	RATE: CFM@	RATE: CFM@	CK - PRE: POST:	DY: SAMPLE CUSTODIAN	SAMPLER	SAMPLE CUSTODIAN
AMBIENT TEMPERATURE: BAROMETRIC PRESSURE: ASSUMED MOISTURE:	PITOT TUBE COEFF, Cp:	PROBE ID NO/MATERIA	PROBE LENGTH:	NOZZLE ID NO/ MATERIAL:	NOZZLE DIAMETER:	FILTER NO/TYPE:	PRE-TEST LEAK RATE:	POST-TEST LEAK RATE:	PITOT LEAK CHECK - PRE:	CHAIN OF CUSTODY:		

st - Pre-Test = Difference			18			
Imp. # Contents Post-Test - Pre-Test = Difference	_1 0.1N H2SO4	_2_ 0.1N H2SO4	_3 Empty	4 Silica gel	Rinse	Total:

		Meter	ΔP	ЧΥ	Stack	Probe	Filter	Imp. Out	Meter T	Meter Temp, °F	Vacuum	o O	P. static
Point	Time	Volume, ft ³	in. H ₂ O	in. H ₂ O	Temp, °F	Temp, °F	Temp, °F	Temp, °F	드	ont	in. Hg.	%	in. H ₂ O
5	1350	291.276	1.1	151	380	452	255	5/7	107	501	7.4		43
7	1354	394.330	1.1	6.7	381	155	253	52	901	108	5 4		
8	1358	397.125	(-)	1.7	3&1	254	256	15	901	be)	51.		
	2011	399.860	Cbs	7.	382	256	CS2	15	E	011	ñ		
	90/7	6102.593	76°	1.1	383	757	182	52	701	129	2 "		
P.C.	0/11	34 SCH											
5	1111	405.148	0./	1.2	138	2.58	255	25	901	110	2 61		
7	1415	407.765	1.1	6.	387	457	254	28	901	110	26		
W	6161	C/10.390	0.7	7.7	383	955	252	32	50)	601	68		
7	52h1	413.275	1.1	2.3	384	784	253	48	901	011	45		
	1427	415.920	96	7.1	383	2.85	252	hS	90)	111	is in		
P. C.	1431	418.703											
	16/32	418.703	1-1	5.	.38.5	256	283	98	2	111	200		
-	1436	421.520	7.7	1,4	383	252	754	56	90)	9/1	500		
64	1450	424-485	1.1	(3)	384	255	253	SC	301	110	, N		
2	HAA	427.415	1-1	1.3	385	452	156	65	901	111	.15		
	3448	430.125	0.1	1.7	384	255	259	57	401	111	2		
rager	ESHI CINE	Average EMD 1452 4132.917	1.02.18	1.211	1,861				1.07.6				

		=	1-HCL-U2						2-	2-HCIU2						6	3-HCL-112			
	dP	(dP)^.5	HP	Ts	Tm	m		ďЬ	(dP)^.5	HP	Ts	Tm	u		ďЬ	(dP)^.5	HP	Ts	T.	Tm
S	1.00	1.000	1.10	375	84	98	5	1.00	1.000	1.30	375	101	100	5	1.10	1.049	1.30	373	105	108
4	86.0	066.0	1.10	376	84	87	4	1.10	1.049	1.40	374	102	103	4	1.20	1.095	1.40	372	105	108
3	0.93	0.964	1.00	376	84	98	33	1.20	1.095	1.50	374	103	104	B	1.00	1.000	1.20	374	106	108
2	0.95	0.975	1.00	374	84	98	2	1.10	1.049	1.40	374	103	105	2	1.00	1.000	1.20	375	105	107
1	0.97	0.985	1.10	375	83	85	1	1.00	1.000	1.30	373	103	105	1	0.95	0.975	1.10	373	104	107
5	1.20	1.095	1.30	373	83	85	5	1.10	1.049	1.40	372	104	106	5	1.20	1.095	1.40	375	104	106
4	1.30	1.140	1.40	374	98	87	4	1.20	1.095	1.50	373	104	106	4	1.10	1.049	1.30	378	105	107
33	1.20	1.095	1.30	373	98	88	3	1.00	1.000	1.30	373	104	106	33	1.10	1.049	1.30	379	106	108
2	1.00	1.000	1.10	372	8.7	88	2	1.10	1.049	1.30	374	103	107	2	0.97	0.985	1.20	380	106	108
1	0.93	0.964	1.00	373	88	68	1	1.00	1.000	1.20	373	103	106	1	0.94	0.970	1.10	381	107	109
5	06.0	0.949	1.00	373	88	68	5	1.00	1.000	1.20	374	104	106	5	0.89	0.943	1.10	382	107	109
4	0.85	0.922	0.98	372	68	06	4	0.98	0.66.0	1.20	375	103	105	4	0.87	0.933	1.00	383	108	110
m	0.83	0.911	0.99	373	68	90	3	0.95	0.975	1.10	373	104	106	m	0.85	0.922	1.00	382	107	110
2	08.0	0.894	96.0	372	88	16	2	0.93	0.964	1.10	372	104	106	2	0.83	0.911	0.99	381	107	110
-	0.84	0.917	1.00	373	68	91	1	06.0	0.949	1.00	373	104	106	1	0.85	0.922	1.00	382	107	110
5	1.00	1.000	1.20	373	06	92	5	0.92	0.959	1.10	373	104	107	50	1.20	1.095	1.40	380	107	109
4	1.10	1.049	1.30	374	91	93	4	0.87	0.933	1.00	374	104	106	4	1.10	1.049	1.30	381	106	108
33	86.0	0.990	1.20	375	92	93	3	0.85	0.922	1.00	374	104	106	33	1.00	1.000	1.20	382	106	109
2	0.94	0.970	1.10	373	93	94	2	0.82	906.0	0.98	375	105	106	2	0.97	0.985	1.20	382	107	110
1	0.90	0.949	1.10	374	93	95	1	08.0	0.894	96:0	374	105	106	1	0.94	0.970	1.10	383	106	109
3	1.10	1.049	1.30	373	92	95	5	1.20	1.095	1.40	373	105	107	S	1.00	1.000	1.20	381	106	110
4	1.20	1.095	1.50	374	93	95	4	1.30	1.140	1.60	374	105	107	4	1.10	1.049	1.30	382	106	110
m	1.10	1.049	1.40	372	94	96	m	1.10	1.049	1.30	375	105	107	co	1.00	1.000	1.20	383	105	109
2	1.10	1.049	1.40	373	95	96	2	1.00	1.000	1.20	375	104	107	2	1.10	1.049	1.30	384	106	110
-	1.00	1.000	1.30	374	96	97	1	0.94	0.970	1.10	374	104	106	П	86.0	066.0	1.20	383	106	111
3	1.00	1.000	1.30	376	95	97	5	1.10	1.049	1.30	372	104	106	30	1.10	1.049	1.30	385	107	111
4	1.10	1.049	1.40	375	96	24	4	1.00	1.000	1.20	373	104	106	4	1.20	1.095	1.40	383	106	110
m	1.20	1.095	1.50	374	96	22	3	1.00	1.000	1.20	373	103	106	33	1.10	1.049	1.30	384	106	110
2	1.10	1.049	1.40	373	24	86	2	1.10	1.049	1.30	374	104	107	5	1.10	1.049	1.30	385	106	111
_	1.00	1.000	1.30	373	86	86	-	0.95	0.975	1.10	375	104	801	1	1.00	1.000	1.20	384	107	111
Average		1.0130	1.201	373.7	6.06	6.	Average		1.0136	1.231	373.7	104.8		Average		1.0218	1.216	380.4	10.	107.6
			Meter Vol	dwj	dwl					Meter Vol	dwI	duuJ					Meter Vol	duul	dwl	
Delta P (iwg)	(6	1.013	182.100	928.4	674.6	253.8	Delta P (iwg)	(g/	1.014	264.5	985.4	762.7	222.7	Delta P (iwg)	G	1.022	350.4	936.6	692.6	244.0
Meter Pressure (iwg)	ure (iwg)	1.201	261.864	675.2	668.1	7.1	Meter Pressure (iwg)	sure (iwg)	1.231	347.391		754.8	33.3	Meter Pressure (iwg)	rre (iwg)	1.216	432.917	717.2	704.8	12.4
Stack Temperature (F)	erature (F)	373.667	79.764	509.5	508.2	1.3	Stack Tem	Temperature (F)	373.667	82.891	655.0	653.4	1.6	Stack Temperature (F	rature (F	380.400	82.517	510.0	507.1	2.9
Meter Temperature (F)	erature (F)	90.900		993.9	968.4	25.5	Meter Tem	Meter Temperature (F)	104.800		1033.1	1009.4	23.7	Meter Temperature (F	erature (F	107.583		955.1	921.7	33.4
Meter Volume (acf)	me (acf)	79.764			20	-50.0	Meter Volu	· Volume (acf)	82.891			20		Meter Volume (acf)	ne (acf)	82.517			50	-50.0
Liquid Volume (ml)	me (ml)	237.700				237.7	Liquid Volume (ml)	ume (ml)	231.300				231.3	Liquid Volume (ml)	me (ml)	242.7				242.7

Appendix A.3 Laboratory Reports

Appendix A.3.1 Hydrogen Chloride Laboratory Data

Client

: Montrose Air Quality Services

Client Project Name

: Desert View Power : 002AS-789048

Client Project No.

002AS-789048

AAC Project No.

: 201644 Rev 1

Reporting Date

: 09/16/2020

On September 11, 2020, Atmospheric Analysis & Consulting, Inc. received nine (9) liquid samples for HCl analysis by EPA Method 26A. Upon receipt each sample was assigned a unique Laboratory ID number as follows:

Client Sample ID	AAC Sample ID	Client Sample ID	AAC Sample ID
1-HCL-U1	201644-12306	3-HCL-U2	201644-12311
2-HCL-U1	201644-12307	Reagent Blank-HCL DI H ₂ O	201644-12312
3-HCL-U1	201644-12308	Reagent Blank-HCL 0.1N H ₂ SO ₄	201644-12313
1-HCL-U2	201644-12309	Field Blank	201644-12314
2-HCL-U2	201644-12310		

This analysis is performed in accordance with AAC's Quality Manual. For detailed information pertaining to specific EPA, NCASI, ASTM and SCAQMD accreditations (Methods & Analytes), please visit our website at www.aaclab.com.

Per clients request the report was revised on 09/16/2020 to include the total sample volumes provided by the client.

I certify that this data is technically accurate, complete, and in compliance with the terms and conditions of the contract. No problems were encountered during receiving, preparation, and/or analysis of these samples. The Technical Director or his/her designee, as verified by the following signature, has authorized release of the data contained in this hardcopy report.

If you have any questions or require further explanation of data results, please contact the undersigned.

Sucha Parmar

Technical Director

This report consists of 5 pages.

Page 1

Laboratory Analysis Report

Anion Analysis by IC

Client

: Montrose Air Quality Services

Desert View Power

Client Project Name AAC Project No.

Analyst

: 201644 Rev 1

: JD/RS

Sampling Dates

: 09/09-10/2020

Receiving Date

: 09/11/2020

Analysis Date

: 09/14-15/2020

Reporting Date

: 09/16/2020

HCl Analysis by EPA Method 26A

Client Sample ID	AAC Sample ID	Sample Volume (mL)	Analysis DF	HCl (mg/ml)	HCl (mg/sample)	SRL (mg/sample)
1-HCL-U1	201644-12306	716.8	5	0.055	39.4	0.369
2-HCL-U1	201644-12307	666.4	5	0.059	39.4	0.343
3-HCL-U1	201644-12308	693.4	5 . µ	0.051	35.3	0.357
1-HCL-U2	201644-12309	710.7	5	0.076	54.0	0.365
2-HCL-U2	201644-12310	706.2	5	0.063	44.3	0.363
3-HCL-U2	201644-12311	684.3	5	0.083	57.2	0.352
Reagent Blank-HCL DI H2O	201644-12312	130	5	<srl< td=""><td><srl< td=""><td>0.067</td></srl<></td></srl<>	<srl< td=""><td>0.067</td></srl<>	0.067
Reagent Blank-HCL 0.1N H2SO4	201644-12313	203	5	<srl< td=""><td><srl< td=""><td>0.104</td></srl<></td></srl<>	<srl< td=""><td>0.104</td></srl<>	0.104
Field Blank	201644-12314	· 415.1 =	5	<\$RL	<srl< td=""><td>0.213</td></srl<>	0.213

<SRL-compound was analyzed for but not detected at or above the SRL (Sample Reporting Limit)</p>

SRL (ug/sample) = Method Reporting Limit (MRL) (0.100 ug/mL) x Sample Volume (mL) x Analysis Dilution Factor x Method Dilution Factor

Sucha Parmar, PhD

Technical Director

Quality Control/Quality Assurance Report EPA 26A

Analysis Date

: 09/14-15/2020

Instrument ID

: DIONEX IC # 1

Analyst

 $: \mathbb{J}\!\mathbb{D}$

Calibration Verification of the 01/22/2020 Calibration

Sample ID	Analyte	Target Concentration (ug/mL)	Measured Concentration (ug/mL)	Percent Recovery (%)*	
Opening CV	Fluoride	25.0	24.0	96.0	
Opening C v	Chloride	25.0	24.5	98.0	
Cantinuina CV	Fluoride	25.0	24.8	99.3	
Continuing CV	Chloride	25.0	26.8	107	
Continuing CV	Fluoride	25.0	24.6	98.3	
Continuing CV	Chloride	25.0	25.6	102	
Continuing CV	Fluoride	25.0	25.4	102	
Continuing Cv	Chloride	25.0	26.7	107	
Closing CV	Fluoride	25.0	25.3	101	
Closing CV	Chloride	25.0	26.4	106	
Casand Cayman	Fluoride	25.0	26.3	105	
Second Source	Chloride	25.0	26.8	107	

^{*} Must be 85-115%

Sucha Parmar, Ph.D. Technical Director

QUALITY CONTROL/ASSURANCE REPORT

EPA 26A

Analysis Date Analyst

: 09/14-15/2020

: JD

Instrument ID : DIONEX IC # 1

Method Blank Analysis

Pittitou	Diana Zinaijaia	
Analyte	Concentration:	Reporting Limit
Fluoride	<srl< td=""><td>0.100</td></srl<>	0.100
Chloride	<srl< td=""><td>0.100</td></srl<>	0.100

		Labori	atory Control Spin	w Analysis			
Analyte	Sample Concentration	Concentration	Lab Spike Concentration (ug/mL)	(ug/mL)		Duplicate Spike Recovery (%)**	% RPD****
Fluoride	0.000	12.5	12.0	12.0	95.7	96.1	0.4
Chloride	0.000	12.5	12.0	12.6	95.9	101	4.7

Matrix Spike Analysis (201644-12309x5)

Analyte	Concentration	Concentration (ug/mL)	Concentration (ug/mL)	Duplicate Matrix Spike Concentration	(%)***	Duplicate Spike Recovery	% RPD****
Fluoride	0.000	12.5	11.5	12.2	91.8	97.7	6,3
Chloride .	7.39	12.5	20.0	19.7	101	98.9	2.4

Matrix Spike Analysis (201603-12071)

		312000, 101 (Parte 2111cm Just 20.	1005 12071			
Analyte	Sample Concentration (ug/mL)	Spike Concentration (ug/mL)	Matrix Spike Concentration (ug/mL)	Duplicate Matrix Spike Concentration (ug/mL)	Spike Recovery (%)***	Duplicate Spike Recovery (%)***	%.RPD****
Fluoride	0.000	12.5	11.5	12.0	92.3	95.6	3.6
Chloride	0.000	12.5	12.0	11.4	96.0	90.8	5.5

Duplicate Sample Analysis

		percuso Sample 1111	,		
Sample ID	Analyte	Result (ug/mL;)	Duplicate Result (ug/mL)	%RPD:*	ĎF
201644-12308	Fluoride	<srl< td=""><td><srl< td=""><td>NA.</td><td>5</td></srl<></td></srl<>	<srl< td=""><td>NA.</td><td>5</td></srl<>	NA.	5
201044-12508	Chloride	49.9	49,2	-1.5`	5 '
201644-12311	Fluoride	<srl< td=""><td><srl< td=""><td>.NA.</td><td>5</td></srl<></td></srl<>	<srl< td=""><td>.NA.</td><td>5</td></srl<>	.NA.	5
201044-12511	Chloride	80.4	. 82.0	2.0	5
201603-12072	Fluoride	<srl< td=""><td><srl< td=""><td>NA</td><td>1</td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1</td></srl<>	NA	1
201003-12012	Chloride	<srl< td=""><td><srl< td=""><td>NA</td><td>1.</td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1.</td></srl<>	NA	1.

^{*} Must be <10%

Technical Director

Page 4

^{**} Must be 85-115%

^{***} Must be 75-125%

^{****} Must be < 25%

Appendix A.3.2 Fuel Analysis Data

				Fuel Sa	Sample	mple 2006079	620		2000					Fuel	Fuel Sample 2006080	3 2006	080			Γ
	н	7	m	4	'n	ဖ	7	œ	6	10	Н	7	ന	4	ın	9	7	œ	ດ	10
Chlorine %	0.139	0.12	0.12	0.045	0.083	0.134	0.43	0.173	0.141	0.161	0.189	0.16	0.043	0.036	0.122	0.119	0.317	0.083	0.023	0.209
Water-Solule Chlorine %	0.117	0.003	0.002	0.039	0.61	0.93	0.03	0.104	0.052	0.028	0.012	0.041	0.014	0.015	0.01	0.026	0.059	0.021	0.022	0.05
Water-Insoluble Chlorine %	0.22	0.117	0.118	900.0	0.022	0.41	0.013	0.069	0.088	0.132	0.177	0.12	0.029	0.021	0.111	0.093	0.258	0.063	0.001	0.159
HCL mg/kg	0.156	0.135	0.13	0.22	0.105	0.108	0.149	0.236	0.167	0.145	0.164	0.206	0.222	0.21	0.217	0.146	0.199	0.252	0.19	0.121
Gross Calorific Value (BTU/lb)	6280	6510	5640	5430	2060	6710	6260	6580	6810	0669	9360	0099	0989	6440	6470	7000	7310	5980	5280	6620
Gross Calorific Value (dry) BTU/lb	8130	8860	7160	6810	8760	8500	7970	8220	8430	8570	8150	8300	8160	8200	8600	8790	9320	8250	6540	7430
Chloride %	0.19	0.16	0.05	0.17	0.19	0.19	0.17	0.17	0.19	0.14	0.09	0.1	0.17	0.13	0.16	0.14	0.15	0.15	0.1	0.17
рн	6.368	6.432	6.449	6.22	6.539	6.53	6.388	6.188	6:339	6.4	6.346	6.248	6.215	6.24	6.226	968.9	6.262	6.16	6.282	6.478
Mercury mg/kg	0.035	0.045	0.056	0.034	0.078	0.097	0.035	0.04	QN	0.033	0.037	0.039	0.036	0.049	0.13	0.036	0.045	0.045	0.039	0.032
Potassium mg/kg	3580	3690	3710	3940	4440	3840	4480	4160	4520	4910	3840	4070	4160	3960	3980	3480	4750	3660	3930	4160
Sodium mg/kg	1730	1470	1620	1790	2640	1720	1550	1340	1450	2190	1460	1680	1760	1540	1320	1390	1530	1340	1280	1230
ASTM E1755-01																				
Ash %	24.7	18.6	10.1	16.4	14.2	14.8	20.1	18	11.5	16.9	18.4	17.7	8.6	11.3	10.9	6.53	8.18	11.7	15.7	16.9
Ultimate Analysis				100			30												4	
Moisture %	22.8	26.5	21.3	20.2	19.4	21.1	21.5	19.9	19.2	18.4	21.9	20.5	22.1	21.5	24.7	20.4	21.6	27.5	19.2	10.8
Ash %	24.7	18.6	10.1	16.4	14.2	14.8	20.1	18	11.5	16.9	18.4	17.7	8.6	11.3	10.9	6.53	8.18	11.7	15.7	16.9
Oxygen %	26.2	33.7	39.6	35.2	38	37.2	29.5	33.3	56.1	43.1	31.3	35.8	44.1	46.5	36.4	46.4	44.6	42.8	30.6	32.4
Sulfur %	0.19	0.17	0.02	0.22	0.12	0.12	0.17	0.19	0.12	0.13	0.05	60.0	0.1	0.1	0.1	60.0	0.1	0.08	0.14	0.11

Wood samples

<u>Date</u>	<u>Time</u>	HHV (dry)	<u>Unit</u>	<u>Date</u>	<u>Time</u>	HHV (dry)	<u>Unit</u>
9/10/2020		8,650	1	9/9/2020		8,330	2
9/10/2020		7,870		9/9/2020		8,570	
9/10/2020		8,220		9/9/2020		7,890	
9/10/2020		7,700		9/9/2020		7,770	
9/10/2020		7,400		9/9/2020		7,150	
9/10/2020		7,440		9/9/2020		7,460	
9/10/2020		8,760		9/9/2020		7,300	
9/10/2020		8,250		9/9/2020		7,840	
9/10/2020		7,620		9/9/2020			
9/10/2020		8,660		9/9/2020			
9/10/2020		8,210		9/9/2020			
9/10/2020		7,800		9/9/2020			
9/10/2020				9/9/2020			
9/10/2020				9/9/2020			
Average	·	8,048		Average		7,789	

Appendix A.3.3 Sample Chain of Custody

700	בב
2	ככס
2	

CLIENT:	Desert View Power		PROJECT NO: 002AS-789048		TEST DATE(S):	September 9 and 10, 2020	and 10, 2020
LOCATION	LOCATION: Unit 1 and Unit 2	Unit 2		SAMPLER(S):	Patrick Whitman	man	
SAMPLE LOCATION:	OCATION:	Stack B	Stack Breaching	PROJECT MANAGER:		Dave Wonderly	
TEST METHOD(S):	HOD(S):	EPA 26A		DATE DUE:	ASAP		
OUTSIDE	OUTSIDE LAB REQUIRED?:		Yes	COMPLIANCE TEST?	TEST? Yes		
DATE	TIME	TEST#	SAMPLE DESCRIPTION	CRIPTION	CONTAINERS	SAMPLER	COMMENTS
9/10/2020	810/1016	1-HCL-U1	Impinger contents and Line rinse	and Line rinse	12306 1	PW	tu= 7168
9/10/2020	1030/1235	2-HCL-U1	Impinger contents and Line rinse	and Line rinse	12307	Md	LA
9/10/2020	1247/1452	3-HCL-U1	Impinger contents and Line rinse	and Line rinse	1 30821	PW	10-652.4
9/9/2020	553/758	1-HCL-U2	Impinger contents and Line rinse	and Line rinse	12309 1	PW	to=710,7
9/9/2020	822/1027	2-HCL-U2	Impinger contents and Line rinse	and Line rinse	12300 1	36	407 706.2
9/9/2020	1230/1435	3-HCL-U2	Impinger contents and Line rinse	and Line rinse	1 1160)	PW	
@@CC/O/O	900	Doctor Tanger					
9/9/2020	0061	Reagent Blank-HCL	100 ML, DI H ₂ O	H ₂ O	12312		
9/9/2020	1500	Reagent Blank-HCL	200 ml 0.1 N, H ₂ SO ₄	I, H ₂ SO₄	12313	DW	
9/9/2020	1530	Field Blank	Impirger contents and Line rinse	and Line ninse	1 4162	PW	TU= 40501
	5						
REI	RELEASED BY		DATE/TIME	RECE	RECEIVED BY	DAT	DATE/TIME
M	July	11/16	4/70 1056		1	4/11/20	2501
ANALYSIS	ANALYSIS REQUIRED:	HCI by E	by EPA Method 26A report as mg/sample.	ार as mg/sample	Record total volume of each sample.	me of each sa	mple.

Appendix A.4 Calibration Data

SPAN GAS RECORD

CLIENT/LOCATION: Desert View Power DATE: 9/9/2020

Unit 2 BY: DW

	MID SPAN	CYLINDER	HIGH SPA	N CYLINDER
	CYLINDER NO.	CONCENTRATION	CYLINDER NO.	CONCENTRATION
ZERO	CC88043	0.00		
O ₂	DT0022871	10.48	DT0011386	19.15
CO2	DT0022871 10.48		DT0011386	18.94

PRE-TEST INSTRUMENT CALIBRATION ERROR

			ANALYZER	
	O ₂	CO ₂		STATUS
Analyzer Range	20	20		
Zero Gas Value	0.0	0.0		
Analyzer Reads	-0.01	0.02		
Error (% of scale)	0.0%	0.1%		PASS
High Gas Value	19.15	18.94		
Analyzer Reads	19.14	18.95		
Error (% of scale)	-0.1%	0.0%		PASS
Mid Gas Value	10.48	10.48		
Analyzer Reads	10.51	10.60		
Error (% of scale)	0.1%	0.6%		PASS
Linearity at Mid Point	0.2%	0.5%		

POST-TEST INSTRUMENT CALIBRATION ERROR

			ANALYZER	
	O ₂	CO ₂		STATUS
Analyzer Range	20	20		
Zero Gas Value	0.0	0.0		
Analyzer Reads	-0.03	0.02		
Error (% of scale)	-0.1%	0.1%		PASS
High Gas Value	19.15	18.94		
Analyzer Reads	18.78	18.88		
Error (% of scale)	-1.9%	-0.3%		PASS
Mid Gas Value	10.48	10.48		
Analyzer Reads	10.30	10.53		
Error (% of scale)	-0.9%	0.2%		PASS
Linearity at Mid Point	0.2%	0.4%		

% ERROR CALCULATION: (AS FOUND - ACTUAL VALUE OF SPAN)/RANGE * 100%

ALLOWABLE DEVIATION IS 2% OF FULL SCALE (2 SQUARES ON STRIPCHART)

SPAN GAS RECORD

CLIENT/LOCATION: Desert View Power

DATE: 9/10/2020

Unit 1

BY: DW

	MID SPAN	CYLINDER	HIGH SPA	N CYLINDER
	CYLINDER NO.	CONCENTRATION	CYLINDER NO.	CONCENTRATION
ZERO	CC88043	0.00		
O ₂	DT0022871	10.48	DT0011386	19.15
CO ₂	DT0022871	10.48	DT0011386	18.94

PRE-TEST INSTRUMENT CALIBRATION ERROR

			ANALYZER	
	O ₂	CO ₂		STATUS
Analyzer Range	20	20		
Zero Gas Value	0.0	0.0		
Analyzer Reads	0.00	0.02		
Error (% of scale)	0.0%	0.1%		PASS
High Gas Value	19.15	18.94		
Analyzer Reads	19.14	18.92		
Error (% of scale)	-0.1%	-0.1%		PASS
Mid Gas Value	10.48	10.48		
Analyzer Reads	10.51	10.57		
Error (% of scale)	0.1%	0.4%		PASS
Linearity at Mid Point	0.2%	0.5%		

POST-TEST INSTRUMENT CALIBRATION ERROR

			ANALYZER	
	O ₂	CO ₂		STATUS
Analyzer Range	20	20		
Zero Gas Value	0.0	0.0		
Analyzer Reads	-0.02	0.02		
Error (% of scale)	-0.1%	0.1%		PASS
High Gas Value	19.15	18.94		
Analyzer Reads	18.77	18.91		
Error (% of scale)	-1.9%	-0.2%		PASS
Mid Gas Value	10.48	10.48		
Analyzer Reads	10.32	10.55		
Error (% of scale)	-0.8%	0.4%		PASS
Linearity at Mid Point	0.3%	0.4%		

% ERROR CALCULATION:

(AS FOUND - ACTUAL VALUE OF SPAN)/RANGE * 100% ALLOWABLE DEVIATION IS 2% OF FULL SCALE (2 SQUARES ON STRIPCHART)

1631 E. St Andrew Pl. 15 Santa Ana, CA 92705

Praxair Order Number: 71208649 Customer PO Number: 79196724

Praxair Distribution, Inc. 5700 S. Alameda Street Los Angeles, CA 90058 Tel: 323-585-2154 Fax: 714-542-6689

Certificate Issuance Date:

1/7/2020

Certification Date: 1/7/2020

Lot Number: N70086000603 Part Number: NI 5.5CE-AS DocNumber: 164126

CERTIFICATE OF ANALYSIS

Nitrogen, 5.5 Continuous Emission Monitorina Zero

Analytes (D 1/6/20	Specification	Analytical Results	Analytical Reference	Analytical Uncertainty
Nitrogen	99.9995 %	99.9995 %	3	
Carbon Dioxide	≤1 ppm	< 0.3 ppm	1.	± 10%
Carbon Monoxide	≤ 0.5 ppm	< 0.3 ppm	1	± 15%
Total Hydrocarbons	≤ 0.1 ppm	< 0.1 ppm	4	± 15%
Oxides of Nitrogen	≤ 0.1 ppm	< 0.1 ppm	7	± 15%
Oxygen	≤ 0.5 ppm	< 0.5 ppm	5	± 15%
Sulfur Dioxide	≤ 0.1 ppm	< 0.1 ppm	6	± 15%
Water	≤ 2 ppm	< 0.5 ppm	2	± 10%

Fill Date: 1/6/2020

Cylinder Style: AS Cylinder Pressure @ 70 F: 2000 psig

Analysis Date: 1/7/2020 Cylinder Volume: 142 ft3

Valve Outlet Connection: CGA 580

Cylinder Number(s): CC118983, SA6076, CC116805, DT0017367, \$\(\)

CC416188, DT0022790, DT0008935, CC66712, CC170680

Filling Method: Pressure/Temperature

Analyzed Cylinder Number(s): CC118983

Analyst: Amalia Real

Approved Signer: Ying Yu

Key to Analytical Techniques:

Reference	Analytical Instrument - Analytical Principle
1	Horiba Instruments Inc. GA-360E - NDIR
2	Meeco Aquavolt PLUS - Specific Water Analyzer
3	N/A - By Difference of Typical Impurities
4	Rosemount/Beckman 400A - FID Total Hydrocarbon Analyzer
5	Servomex DF310E SN# PT-25457-V6 - Electrolytic Cell/Electrochemical
6	Thermo 43I-AKSCA S/N 1420962322 - UV Spectrometry
7	Thermo Electron 42i-LS S/N 1030645077 - Chemiluminescence

This analysis of the product described herein was prepared by Praxair Distribution, Inc. using instruments whose calibration is certified using Praxair Distribution, Inc. Reference Materials which are traceable to the International System of Units (SI) through either weights traceable to the National Institute of Standards and Technology (NIST) or Measurement Canada, or through NIST Standard Reference Materials or equivalent where available

Note: All expressions for concentration (e.g., % or ppm) are for gas phase, by volume (e.g., ppmv) unless otherwise noted. Analytical uncertanity is expressed as a Relative % unless otherwise noted.

IMPORTANT

Interview new prepared at your request by personnel within Praxair Distribution, Inc.. While we believe the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall liability of Praxair Distribution, Inc. arising out of the use of the information contained herein exceed the fee established for providing such information

DocNumber: 293840

Praxair Distribution, Inc. 5700 S. Alameda Street Los Angeles CA 90058

Tel: 323-585-2154 Fax: 714-542-6689 PGVP ID: F22019

FANALYSIS / EPA PROTOCOL GAS

1631 E. St Andrew Pl. Santa Ana, CA 92705 Certificate Issuance Date: 11/19/2019 Praxair Order Number: 71151966 Part Number: NI CD10.506E-AS Customer PO Number: 79138652

Cylinder Style & Outlet: AS Cylinder Pressure and Volume: 2000 osig

Lot Number: 70086931604 CGA 590 140 ft3

Fill Date: 11/12/2019

	10.48	Certified Concentration	
1 /	Expiration Date:	11/19/2027	NIST Traceable
	Cylinder Number:	DT0022871	Expanded Uncertainty
	10.48 %	Carbon dioxide	± 0.6 %
	1010H	Oxygen	± 0.4 %
	U. T Glance	Nitrogen	

ProSpec EZ Cert

Certification

Dertification Date: 11/19/2019

Term: 96 Months

Expiration Date: 11/19/2027

ability Protocol, Document #EFA-600/R-12/531, using Procedure G1.

Oxygen IR Broadening effect. O2 responses have been corrected for CO2 interference.

erence Standard, Z=Zero Gas, C=Gas Candidate) Analytical Da

Requested Concentration: 10.5 %

Certified Concentration: 10.48 %

Instrument Used: Horiba VIA-510 S/N 20C194WK

Analytical Method: NDIR Last Multipoint Calibration: 10/21/2019

First	Analysis	Data:				Date	11/19/2019
Z:	0	R:	14	C:	10.48	Conc:	10.48
R:	14	Z:	0	C:	10.48	Conc:	10.48
Z:	0	C:	10.5	R:	14.02	Conc:	10,5
UOM	: %			λ	Jean Test	Assav:	10.48 %

Component: Oxygen

> Requested Concentration: 10.5 % Certified Concentration: 10.48 % Instrument Used: **OXYMAT 5E** Analytical Method. Paramagnetic Last Multipoint Calibration: 10/21/2019

First	Analysis	Data:		1	Date	11/19/2019
Z:	0	R:	9.88	C: 10.49	Conc:	10.48
R:	9.88	Z:	0	C/ 10.49	Conc:	10.48
Z:	0	C:	10.5	F : / 9.89	Conc:	10.49
UOM	1: %			/ Mean Test	Assay:	10.48 %

Analyzed By

Jose Vasquez

Reference Standard: Type / Cylinder #: GMIS / CC164230 Concentration / Uncertainty: 14.00 % ±0.265%

Expiration Date: 04/16/2027

Traceable to: SRM # / Sample # / Cylinder #: SRM 1675b / 6-F-51 / CAL014538

SRM Concentration / Uncertainty: 13,963% / ±0.034% SRM Expiration Date: 05/16/2022

Secon	d Analy	/sis Data	:			Date		
Z:	0	R:	۵	C;	0	Conc:	0	
R:	0	Z:	O	C;	D	Conc:	0	
Z :	0	C:	a	R;	n	Cone:	0	
UOM:	%			M	ean Tes	t Assay:		%

Reference Standard: Type / Cylinder #: NTRM / DT0010384

Concentration / Uncertainty: 9.875 % +0.4%

Expiration Date: 11/18/2022

SRM # / Sample # / Cylinder #: NTRM / 170701 / NTRM DT0010384

SRM Concentration / Uncertainty: 9.875% / ±0.040% SRM Expiration Date: 11/18/2022

Second Analysis Data: Date Z; 0 R: Conc: 0 R: 0 Z: 0 C: 0 Conc: 0

Z: 0 C: 0 0 Conc: 0 UOM: % Mean Test Assay:

Certified By

CR 12/16/19

%

Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxair Distribution, Inc., arising out of the use of the information contained herein exceed the fee established for providing such information.

DocNumber: 293572

Praxair Distribution, Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154

Fax: 714-542-6689 PGVP ID: F22019

ALE QUALLEY SERVICES OF ANALYSIS / EPA PROTOCOL GAS

1631 E. St Andrew Pl. Santa Ana, CA 92705 Certificate Issuance Date: 11/14/2019 Praxair Order Number: 90362737 Part Number: NI CD1902E-AS Customer PO Number: VERBAL: MIKE

Lot Number: 70086931505 Cylinder Style & Outlet: AS Cylinder Pressure and Volume: 2000 psig

Fill Date: 11/11/2019

CGA 590 156 ft3

Cylinder Number:

Certified Concentration 11/15/2027

NIST Traceable **Expanded Uncertainty**

DT0011386 Carbon dioxide ± 0.5 %

Oxygen Nitrogen

Reference Standard:

± 0.1 %

ProSpec EZ Cert

tion Date: 11/15/2019 lity Protocol, Document #EPA-600/R-12/531, using Procedure G1.

Term: 96 Months

Expiration Date: 11/15/2027

ing effect. O2 responses have been corrected for CO2 interference.

erence Standard, Z=Zero Gas, C=Gas Candidate) Analytical Di

1. Componen

Requested Concentration: Certified Concentration:

Instrument Used: Horiba VIA-510 S/N 20C194WK

Analytical Method: NOIR Last Multipoint Calibration: 10/21/2019

Firs	t Analysis	Data:				Date	11/15/2019
Z:	0	R:	19 99	C:	18,94	Conc:	18.94
R:	19.98	Z:	O	C:	18.94	Conc:	18.94
Z;	0	C:	18.96	R:	19.99	Conc:	18.96
UON	1: %				lean Test	Assav.	18.94 %

Component: Oxygen

> Requested Concentration: 19 % Certified Concentration: 19.15 % Instrument Used: OXYMAT 5E Analytical Method: Paramagnetic

> > Jose Vasquez

Last Multipoint Calibration: 10/21/2019 First Analysis Data: Date 11/15/2019 Z: 0 R: 20.88 C: 19.15 Conc: 19,13 R: 20,88 **Z**: 0 19.17 C: Conc: 19.15 0 C; 19.17 R: 20.9 19.15 Conc: UOM: % Mean Test Assay: 19.15

Analyzed By

Type / Cylinder #: GMIS / CC149981 Concentration / Uncertainty: 19.98 % ±0.279% Expiration Date: 06/07/2026

Traceable to: SRM # / Sample # / Cylinder #: RGM#CC28033 / N/A / RGM#CC28033

SRM Concentration / Uncertainty: 19.67% / ±0.04% SRM Expiration Date: 07/15/2021

Secon	d Anal	ysis Data:		*********		Date		
Z:	0	R:	0	C:	0	Cone:	0	
R:	۵	Z :	٥	C:	Ω	Conc:	0	
Z:	0	G:	0	R:	0	Conc;	0	
UOM:	%			М	ean Tes	t Assav:		%

Reference Standard: Type / Cylinder #: GMIS / CC506521

Concentration / Uncertainty: 20.87 % ±0.108% Expiration Date: 12/14/2026

Traceable to: SRM # / Sample # / Cylinder #: SRM 2659a / 71-E-19 / FF22331

SRM Concentration / Uncertainty: 20,863% / ±0,021% SRM Expiration Date: 08/23/2021

Secon	d Analy	sis Data	:			Date		
Z:	0	R:	0	C;	0	Cons:	0	
R:	0	Z:	0	C:	0	Conc:	0	
Z:	0	C:	O	R:	٥	Conc:	0	
UOM:	%			M	ean Tes	t Assay:		%

Certified By

Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no varranty or representation as to the suitability of the use of the information for any purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxeir Distribution, Inc., arising out of the use of the information contained herein exceed the fee established for providing such information.

SEMI-ANNUAL DRY GAS METER/ORIFICE CALIBRATION

Orifice Metho	Onfice Method - Triplicate Runs/Four Calibration Points	Model #:	C2000	
English Mete	English Meter Box Units, English K' Factor	#	17WCS	
Filename:	C:\Users\dwonderty\Information\Calibrations\Dry Gas Meters\17-wcs\2020\[\text{Semi-Annual Meter Cal 4-3-20 WCS-17.xis}]WCS Date:	Date:	4/3/2020	
File Modified	File Modified From: APEX 522 Series Meter box Calibration	essure:	29.93	(in. Hg)
Doning.	3/00/00/2	Dorformod By: D House	Daniel C	

	ature	Average	(deg F)	56.0	999	56.0	55.0	55.0	55.0	56.0	56.0	56.0	1	25.0	55.0	55.0
	Ambient Temperature	Final	(deg F)	56.0	56.0	56.0	55.0	55.0	55.0	56.0	56.0	56.0		55.0	55.0	55.0
	∢	Initia	(deg F)	26.0	96.0	56.0	92.0	55.0	65.0	96.0	56.0	96.0		92.0	55.0	55.0
DINGS	Actual	Vacuum	(in Hg)	19.0	19.0	19.0	16.0	16.0	16.0	14.0	14.0	14.0		12.0	12.0	12.0
CRITICAL ORIFICE READINGS	Orifice K' Orifice	Coefficient	(see above)	0.1551	0.1551	0.1551	0.3345	0.3345	0.3345	0.5915	0.5915	0.5915		0.7678	0.7678	0.7678
	Serial#	(unmper)	33	33	33	48	48	48	63	63	63		73	73	73	
	Final Temps.	Outlet	(d geb)	62.0	62.0	63.0	67.0	57.0	57.0	0.09	61.0	60.0		61.0	62.0	62.0
		Infet	(deg F)	64.0	65.0	65.0	9.69	0.09	69.0	62.0	62.0	62.0		65.0	65.0	65.0
NGS	Initial Temps.	Outlet	(deg F)	61.0	62.0	62.0	57.0	57.0	57.0	58.0	0.09	61.0		0.09	61.0	62.0
TER READ	Initial	Inlet	(deg F)	64.0	64.0	65.0	58.0	59.0	0.09	0.09	62.0	62.0		64.0	65.0	65.0
DRY GAS METER READINGS	Volume	Total	(cn ft)	5.324	5.323	5.326	5.291	5.292	5.288	5.463	5.461	5.463		5.069	5.066	5.072
	Volume	Final	(cn ft)	932.824	938.147	943.473	877.291	882.583	887.871	895.963	901.424	906.887		915,669	920.735	925.807
	Volume	Initial	(cn ft)	927.500	932:824	938.147	872.000	877.291	882.583	890.500	895.963	901.424		910.600	915.669	920.735
		Time	(min)	26.00	26.00	26.00	12.00	12.00	12.00	7.00	7.00	7.00		5.00	5.00	5.00
		H	(in H2O)	0.11	0.11	0.11	0.45	0.45	0.45	1.50	1.50	1.50		2.80	2.80	2.80

i (Oritice	Average		dH@ - dH@ av	< 0.155?				Pass												
į	Outice	Average		Ymax - Ymin 0.98 < Y/Yd	< 1.02?				Pass												
	ndividual	Orifice		Ymax - Ymin	< 0.010?				Pass												
	Individual	Run		7 > 36.0	< 1.05?	Pass	Pass	Pass													
ORIFICE	CALIBRATION FACTOR		gH@	Value	(in H2O)	1.500	1.499	1.498	1.499	1.329	1.329	1.329	1.329	1.413	1.409	1.409	1.411	1.558	1.555	1.554	1,556
DRY GAS METER	CALIBRATION FACTOR		>	Value	(number)	0.988	0.989	0.989		0.980	0.981	0.982		0.980	0.983	0.982		0.982	0.984	0.983	
•		VOLUME	NOMINAL	Vcr	(cn ft)	5.193	5.193	5.193	Average	5.163	5.163	5.163	Average	5.332	5.332	5.332	Average	4.939	4.939	4.939	Average
ORIFICE				Vcr(std)	(liters)	150.5	150.5	150.5		149.9	149.9	149.9		154.5	154.5	154.5		143.4	143.4	143.4	
		VOLUME	CORRECTED	Vcr(std)		5.313				5.293	5.293	5.293		5.456	5.456	5.456		5.063	5.063	5.063	
S METER		VOLUME	CORRECTED	Vm(std)	(liters)	152.3	152.1	152.1		153.0	152.8	152.7		157.7	157.2	157.3		146.1	145.8	145.9	
DRY GAS METER		VOLUME	CORRECTED	Vm(std)	(cn ft)	5.379	5.372	5.370		5.401	5.397	5.393		5.567	5.552	5.554		5.157	5.147	5.150	

SIGNED:

Date:

Q @ dH = 1: 0.623 ê H Ö

Average Yd: 0.984

SEMI-ANNUAL DRY GAS METER/ORIFICE CALIBRATION

CUITOR IMPLIES	Office Metrod - Triplicate Runskhout Calibration Points	Middel #:	Š
English Metel	English Meter Box Units, English K' Factor	ID#:	17
Filename:	ion\Calibrations\Dry Gas Meters\17-wcs\2020\[17WCS Semi Annual Cal 9-11-2020.xls]WCS	Date:	9/11/
File Modified	File Modified From: APEX 522 Series Meter box Calibration	Bar, Pressure:	29
The state of the property of t		O Francisco	Č

Model #: C3000 ID #: 17WCS Date: 9/11/2020 Bar, Pressure: 29.95 (in. Hg) Performed By: L.Olivares

	_		_	_	_	_				_	_	_			_	
	Ambient Temperature	Average	(deg F)	65.0	65.0	65.0	65.0	65.0	65.0		65.0	65.0	65.0	65.0	65.0	65.0
		Final	(deg F)	65.0	65.0	65.0	65.0	65.0	65.0		65.0	65.0	65.0	65.0	65.0	65.0
	Ā	Initial	(deg F)	65.0	65.0	65.0	65.0	65.0	65.0		65.0	0.69	65.0	65.0	65.0	65.0
DINGS	Actual	Vacuum	(in Hg)	22.5	22.5	22.5	16.0	16.0	16.0		14.0	14.0	14.0	12.0	12.0	12.0
CRITICAL ORIFICE READINGS	K' Orifice	Coefficient	(see apove)	0.1552	0.1552	0.1552	0.3346	0.3346	0.3346		0.5918	0.5918	0.5918	0.7681	0.7681	0.7681
CRITICA	Orifice	Serial#	(number)	33	33	33	48	48	48		63	63	63	73	73	73
	Final Temps.	Outlet	(deg F)	78.0	78.0	78.0	0'22	0.77	78.0		76.0	76.0	76.0	72.0	73.0	74.0
	Final	Inlet	(deg F)	80.0	80.0	81.0	81.0	81.0	83.0		82.0	82.0	83.0	78.0	80.0	82.0
NGS	Initial Temps.	Outlet	(deg F)	78.0	78.0	78.0	0.77	77.0	77.0		74.0	76.0	76.0	72.0	72.0	73.0
LEK KEADI	Initial	Inlet	(deg F)	83.0	80.0	80.0	83.0	81.0	82.0		82.0	82.0	82.0	77.0	78.0	80.0
ā ·	Volume	Total	(cn ff)	5.383	5.380	5.379	5.340	5.349	5.345		5.486	5.486	5.491	5.149	5.153	5.122
	Final	(cn ft)	531.183	536.563	541.942	514.640	519.989	525.334		497.086	502.572	508.063	480.549	485.702	490.824	
	Initial	(cn ft)	525.800	531.183	536.563	509.300	514.640	519.989		491.600	497.086	502.572	475.400	480.549	485.702	
		Time	(min)	26.00	26.00	26.00	12.00	12.00	12.00		7.00	7.00	7.00	5.00	5.00	5.00
		둉	(in H2O)	0.10	0.10	0.10	0.50	0.50	0.50		1.60	1.60	1.60	2.80	2.80	2.80

Orifice	Average		dH@ - dH@ av	< 0.155?				Pass														
Orifice	Average		0.98 < Y/Yd	< 1.02?				Pass														
Individual	Orifice		Ymax - Ymin	< 0.0107				Pass														
Individual	Run		7 > 36.0	< 1.05?	Pass	Pass	Pass		1													
ORIFICE CALIBRATION FACTOR		gH@	Value	(in H2O)	1.343	1.343	1.343	1.343	1.447	1.447	1.446	1.447	1.486	1.483	1.483	1.484	1.552	1.551	1.548	1.550	4H.B. 4 450	
DRY GAS METER CALIBRATION FACTOR		>	Value	(unmper)	1.001	1.000	1.000	Average 1.000	1.002	1.000	1.002	Average 1.001	1.002	1.003	1.003	Average 1.003	0.980	0.981	0.990	Average 0.984	A	\ \frac{1}{2}
	VOLUME	NOMINAL	Vcr	(cn ft)	5.240	5.240	5.240	Ave	5.215	5.215	5.215	Ave	5.380	5.380	5.380	Ave	4.989	4.989	4.989	Ave		AVPL
ORIFICE	VOLUME	CORRECTED !	Vcr(std)	(liters)	149.3	149.3	149.3		148.6	148.6	148.6		153.3	153.3	153.3		142.2	142.2	142.2		L	
	VOLUME	CORRECTED	Vcr(std)	(cn ft)	5.273	5.273	5.273		5.248	5.248	5.248		5.414	5.414	5.414		5.020	5.020	5.020			
METER	VOLUME	CORRECTED	Vm(std)	(liters)	149.3	149.4	149.3		148.3	148.7	148.3		153.0	152.9	153.0		145.1	144.9	143.6			
DRY GAS METER				(cn ft)	5.270	5.275	5.271		5.236	5.249	5.236		5.403	5.398	5.401		5.122	5.116	5.071			

SIGNED: Signature on file

Black of the

Date:

Q @ dH = 1:

8/6/2020

Date:

1.838 0.553

dH@: Q @ dH = 1:

1.009

Average Yd:

SEMI-ANNUAL DRY GAS METER/ORIFICE CALIBRATION

Orifice Method - Triplicate Runs/Four Calibration Points
English Meter Box Units, English K' Factor
Filemane. C:Users\downden\yInformation\Calibrations\Dry Gas Meters\QS-wcs\Q020\{semi annual cal 29wcs 6-6-20.xlsx\}WCS
FileMore Triple More Triple More Triple More Triple More Triple Triple

(in. Hg) c-5000 ID #: 29-wcs Date: 8/6/2020 Bar. Pressure: 29.91 (Performed By: R. Howard

		ature	Average	(deg F)	76.0	76.0	76.0	76.0	76.0	76.0		76.0	76.0	76.0	76.0	76.0	76.0
		Ambient Temperature	Final	(deg F)	76.0	76.0	76.0	76.0	76.0	76.0		76.0	76.0	76.0	76.0	76.0	76.0
		Ā	Initial	(deg F)	76.0	76.0	76.0	76.0	76.0	76.0		76.0	76.0	76.0	76.0	76.0	76.0
	DINGS	Actual	Vacuum	(in Hg)	18.0	18.0	18.0	17.5	17.5	17.5		14.0	14.0	14.0	10.0	10.0	10.0
Meter Serial #:	CRITICAL ORIFICE READINGS	K' Orifice	Coefficient	(see above)	0.1551	0.1551	0.1551	0.3345	0.3345	0.3345		0.5915	0.5915	0.5915	0.7678	0.7678	0.7678
_	CRITICA	Orifice	Seria(#	(number)	33	33	33	48	48	48	Ì	63	63	63	73	73	73
		Final Temps.	Outlet	(deg F)	79.0	79.0	80.0	84.0	83.0	83.0		90:0	81.0	82.0	85.0	85.0	85.0
		Final	Inlet	(deg F)	79.0	80.0	80.0	86.0	86.0	86.0		85.0	88.0	89.0	87.0	86.0	86.0
	NGS	Initial Temps.	Outlet	(deg F)	0.77	790	79.0	82.0	84.0	83.0		80.0	80.0	81.0	84.0	85.0	85.0
	TER READI	Initial	Inlet	(deg F)	78.0	79.0	80.0	85.0	86.0	96.0		82.0	85.0	88.0	0.78	87.0	96.0
	DRY GAS METER READINGS	Volume	Total	(cn ft)	5.317	5.316	5.317	5.267	5.262	5.260		5.473	5.471	5.477	4.997	4.995	4.999
		Volume	Final	(cn ft)	272.917	278.233	283.550	307.667	312.929	318.189		290.473	295.944	301.421	324.997	329.992	334.991
		Volume	Initial	(on ft)	267.600	272.917	278.233	302 400	307.667	312.929		285.000	290.473	295.944	320.000	324.997	329.992
			Time	(min)	26.00	26.00	26.00	12.00	12.00	12.00		7.00	7.00	7.00	5.00	5.00	5.00
			¥	(in H2O)	0.14	0.14	0.14	0.64	0.64	0.64		1.90	1.90	1.90	3.20	3.20	3.20

VOLUME	NI GAS WEIER	OKIFICE		O	DRY GAS METER CALIBRATION FACTOR	ORIFICE CALIBRATION FACTOR	Individual	Individual	Orifice	Orifice
		VOLUME	VOLUME				Run	Orifice	Average	Average
CORRECTED	CORRECTED	CORRECTED	CORRECTED	NOMINAL	>-	@Hp				,
Vm(std)		Vcr(std)	Vcr(std)	Vcr	Value	Value	V > 36.0	Ymax - Ymin	0.98 < Y/Yd	dH@ - dH@ av
(cn ft)	(liters)	(cn ft)	(liters)	(cn ft)	(unmper)	(in H2O)	< 1.05?	< 0.010?	< 1.02?	< 0.155?
5.214	147.7	5.210	147.5	5.293	0.999	1.924	Pass			
5.203	147.4	5.210	147.5	5.293	1.001	1.921	Pass			
5.199	147.2	5.210	147.5	5.293	1.002	1.919	Pass			
				Average		1.921		Pass	Pass	Pass
5.114	144.8	5.185	146.8	5.268	1.014	1.874	Pass			
5.104	144.6	5.185	146.8	5.268	1.016	1.872	Pass			
5.105	144.6	5.185	146.8	5.268	1.016	1.874	Pass			
				Average		1.874		Pass	Pass	Pass
5.355	151.7	5.350	151.5	5.435	0.999	1.789	Pass			
5.336	151.1	5.350	151.5	5.435	1.003	1.787	Pass			
5.327	150.9	5.350	151.5	5.435	1.004	1.784	Pass			
				Average		1.786		Pass	Pass	Pass
4.869	137.9	4.960	140.5	5.039	1.019	1.773	Pass			
4.867	137.8	4.960	140.5	5.039	1.019	1.772	Pass			
4.873	138.0	4.960	140.5	5.039	1.018	1.772	Pass			
				Average		1.772		Pass	Pass	Pass

Signature on File SIGNED

109 of 265

THERMOCOUPLE CALIBRATION

Thermocouple ID: 75

Date: 7/2/2020

Performed By: JG/DH/LO/DA

Calibrated Digital Temperature Readout ID: PTC-79

T1 Reference Thermometer ID: 492956 T2 Reference Thermometer ID: 242196 T3 Reference Thermometer ID: 242167

T/C			T/C - F	Readout			Reference 1	Thermometer		Diffe	erence
I.D.	Readout		°F				c	Ϋ́F			
75	I.D.	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)
T3 (OIL)	PTC-79	360	360	360	360	364	364	364	364	4.0	0.5%
T2 (Boiling H ₂ O)	PTC-79	217	217	217	217	214	214	214	214	3.0	0.4%
T1 (Ice/Water)	PTC-79	32	33	33	33	32	32	32	32	0.7	0.1%

Pass Pass Pass

¹⁾ Difference % (°R) = Difference (°F) / (Average Tref + 460)

²⁾ Pass if all Differences are less than 1.5% (°R)

DIGITAL TEMPERATURE READOUT CALIBRATION

Digital Temperature Readout ID: 29-WCS

Readout Description: Control Box

Date: 7/2/2020

Performed By: JG/DH/LO/DA

Calibrated Thermocouple ID: TC-CAL T1 Reference Thermometer ID: 492956 T2 Reference Thermometer ID: 242196 T3 Reference Thermometer ID: 242167

T/C			T/C - I	Readout			Reference T	hermometer		Diffe	erence	1
I.D.	Readout			°F			c	°F				1
TC-CAL	I.D.	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)	
T3 (OIL)	29-WCS	347	347	347	347	350	350	350	350	3.0	0.4%	Pass
T2 (Boiling H ₂ O)	29-WCS	214	214	214	214	212	212	212	212	2.0	0.3%	Pass
T1 (lce/Water)	29-WCS	33	33	33	33	32	32	32	32	1.0	0.2%	Pass

¹⁾ Difference % (°R) = Difference (°F) / (Average Tref + 460)

Thermocouple Source Readings

			T/C - Readout				T/C Source				Difference		
	T/C Source			'F			c	`F				1	
	S/N	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)		
T4 (~650 F)	S/N 106970	653	653	653	653	650	650	650	650	3.0	0.3%	Pass	
T3 (~370 F)	S/N 106970	366	366	366	366	365	365	365	365	1.0	0.1%	Pass	
T2 (~212 F)	S/N 106970	213	212	212	212	212	212	212	212	0.3	0.0%	Pass	
T1 (~32 F)	S/N 106970	33	33	33	33	32	32	32	32	1.0	0.2%	Pass	

¹⁾ Difference % (°R) = Difference (°F) / (Average Tref + 460)

²⁾ Pass if all Differences are less than 1.5% (°R)

²⁾ Pass if all Differences are less than 1.5% (°R)

DIGITAL TEMPERATURE READOUT CALIBRATION

Digital Temperature Readout ID: 17-WCS

Readout Description: Control Box

Date: 7/2/2020

Performed By: JG/DH/LO/DA

Calibrated Thermocouple ID: TC-CAL T1 Reference Thermometer ID: 492956 T2 Reference Thermometer ID: 242196 T3 Reference Thermometer ID: 242167

T/C			T/C - F	Readout			Reference T	hermometer		Diffe	erence	
I.D.	Readout		°F				c	'F				1
TC-CAL	I.D.	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)]
T3 (OIL)	17-WCS	355	356	356	356	368	368	368	368	12.3	1.5%	Pas
T2 (Boiling H₂O)	17-WCS	208	208	208	208	212	212	212	212	4.0	0.6%	Pas
T1 (lce/Water)	17-WCS	27	27	27	27	32	32	32	32	5.0	1.0%	Pas

¹⁾ Difference % (°R) = Difference (°F) / (Average Tref + 460)

Thermocouple Source Readings

			T/C - F	Readout			T/C S	ource		Diffe	erence	
	T/C Source		•	'F			c	'F				1
	S/N	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)	
T4 (~650 F)	S/N 106970	649	649	648	649	650	650	650	650	1.3	0.1%	Pass
T3 (~370 F)	S/N 106970	360	360	360	360	365	365	365	365	5.0	0.6%	Pass
T2 (~212 F)	S/N 106970	209	209	209	209	212	212	212	212	3.0	0.4%	Pass
T1 (~32 F)	S/N 106970	27	27	27	27	32	32	32	32	5.0	1.0%	Pass

¹⁾ Difference % (°R) = Difference (°F) / (Average Tref + 460)

²⁾ Pass if all Differences are less than 1.5% ($^{\circ}\text{R})$

²⁾ Pass if all Differences are less than 1.5% (°R)

S Type Pitot Tube Dimensional Calibration Record

	1
ž X	M ₂ End View
_	<u></u>
→ +	_
1	

8 • 4 8 →

₹

Σ

Top View

	Status	Pass	
1.5		•	
1.05 Dt < P < 1.5 Dt	Ratio of P/Dt	1.2	
5 degrees	Average Face Opening Plane Frontal Angle from parallel to Longitudinal Axis	-2.5	
10 degrees	Average Face Opening Plane Cangle, offset from perpendicular to transverse axis	0.3	
n/a	MG	0.428	
n/a	MS	0.408	
n/a	M4	0.957	
n/a	M3	0.921	
n/a	M2	0.930	
n/a	M1	0.934	
"3/16" < Dt < 3/8"	Tubing Diameter, dt	0.375	
Yes	Pa = Pb	Y	
z < 1/8" w < 1/32"	Side View, Side View, Impact openings openings Property Property aligned, z < aligned, w < 1/8"	٨	
z < 1/8"	Side View, Impact openings Properly aligned, z < 1/8"	≻	
iteria	Calibrated By	DA	
Acceptability Criteria	Date	7/2/20	
	Pitot ID	075	

Reference "A Type-S Pitot Tube Calibration Study", Robert F. Vollaro, October 15, 1975
If tube is not visibly deformed it is assumed that Pa = Pb = .5 x avg. of M1 & M2, and that average face opening plane angles represent individual angles to tube axis Notes:

Side View

AA MONITD

NOZZLE CALIBRATION DATA

Nozzle I.D. DUP 14 1	Date 9/8/2020
Material GLC 5C	By Du
Configuration (L or Hook)	

Maximum Difference D_i - D_j = $\frac{\sim O / I}{I}$ (must be 0.004" or less)

Average Dn =
$$0.221$$

Note: Measure three diameters with micrometer

APPENDIX B CALCULATIONS

Appendix B.1 General Emissions Calculations

GENERAL EMISSION CALCULATIONS

I. Stack Gas Velocity

A. Stack gas molecular weight, lb/lb-mole

$$MW_{dry} = 0.44 * \%CO_2 + 0.32 * \%O_2 + 0.28 * \%N_2$$

$$MW_{wet} = MW_{dry} * (1 - B_{wo}) + 18 * B_{wo}$$

B. Absolute stack pressure, iwg

$$Ps = Pbar + \frac{Psg}{13.6}$$

C. Stack gas velocity, ft/sec

$$V_s = 2.9 * C_p * \sqrt{\Delta P} * \sqrt{T_s} * \sqrt{\frac{29.92 * 28.95}{P_s * MW_{wet}}}$$

II. Moisture

A. Sample gas volume, dscf

$$V_{mstd} = 0.03342 * V_{m} * (P_{bar} + \frac{\Delta H}{13.6}) * \frac{T_{ref}}{T_{m}} * Y_{d}$$

B. Water vapor volume, scf

$$V_{wstd} = 0.0472 * V_{lc} * \frac{T_{ref}}{528 ° R}$$

C. Moisture content, dimensionless

$$\mathsf{B}_{\mathsf{wo}} = \frac{\mathsf{V}_{\mathsf{wstd}}}{(\mathsf{V}_{\mathsf{mstd}} + \mathsf{V}_{\mathsf{wstd}})}$$

III. Stack gas volumetric flow rate

A. Actual stack gas volumetric flow rate, wacfm

$$Q = V_s * A_s * 60$$

B. Standard stack gas flow rate, dscfm

$$Q_{sd} = Q * (1 - B_{wo}) * \frac{T_{ref}}{T_s} * \frac{P_s}{29.92}$$

IV. Gaseous Mass Emission Rates, lb/hr

$$M = \frac{ppm * MW_i * Q_{sd} * 60}{SV * 10^6}$$

V. Emission Rates, lb/MMBtu

$$\frac{lb}{MMBtu} = \frac{ppm * MW_i * F}{SV * 10^6} * \frac{20.9}{20.9 - \%O_2}$$

VI. Percent Isokinetic

$$I = \frac{17.32 \text{ x T}_{s} \text{ (V}_{m}\text{std)}}{\text{(1-Bwo) } 0 \text{ x Vs x Ps x Dn2}} \text{ x } \frac{520^{\circ}\text{R}}{\text{T}_{ref}}$$

- VII. Particulate emissions
 - (a) Grain loading, gr/dscf $C = 0.01543 (M_n/V_{m std})$
 - (b) Grain loading at 12% CO₂, gr/dscf $C_{12\%}$ CO₂ = C (12/% CO₂)
 - (c) Mass emissions, lb/hr $M = C \times Qsd \times (60 \text{ min/hr})/(7000 \text{ gr/lb})$
 - (d) Particulate emission factor

$$Ib/10^6 Btu = Cx \frac{1 Ib}{7000 gr} x Fx \frac{20.9}{20.9 - \% O_2}$$

Nomenclature:

 A_s = stack area, ft^2

B_{wo} = flue gas moisture content, dimensionless

C_{12%CO2} = particulate grain loading, gr/dscf corrected to 12% CO₂

C = particulate grain loading, gr/dscf C_p = pitot calibration factor, dimensionless

Dn = nozzle diameter, in.

 $\begin{array}{ll} \mathsf{F} & = \mathsf{fuel}\;\mathsf{F}\text{-}\mathsf{Factor},\,\mathsf{dscf}/\mathsf{MMBtu}\;@\;0\%\;\mathsf{O}_2 \\ \mathsf{H} & = \mathsf{orifice}\;\mathsf{differential}\;\mathsf{pressure},\,\mathsf{iwg} \end{array}$

I = % isokinetics

 M_n = mass of collected particulate, mg M_i = mass emission rate of specie i, lb/hr MW = molecular weight of flue gas, lb/lb-mole

 M_{wi} = molecular weight of specie i:

SO₂: 64 NO_x: 46 CO: 28 HC: 16

0 = sample time, min.

 ΔP = average velocity head, iwg = $(\sqrt{\Delta P})^2$

P_{bar} = barometric pressure, inches Hg P_s = stack absolute pressure, inches Hg

P_{sg} = stack static pressure, iwb

Q = wet stack flow rate at actual conditions, wacfm

Q_{sd} = dry standard stack flow rate, dscfm

SV = specific molar volume of an ideal gas at standard conditions, ft³/lb-mole

 T_m = meter temperature, °R T_{ref} = reference temperature, °R T_s = stack temperature, °R V_s = stack gas velocity, ft/sec

V_{lc} = volume of liquid collected in impingers, ml

V_m = uncorrected dry meter volume, dcf

V_{mstd} = dry meter volume at standard conditions, dscf V_{wstd} = volume of water vapor at standard conditions, scf

Y_d = meter calibration coefficient

Appendix B.2 Unit 1 Calculations

Appendix B.2.1 Unit 1 Gaseous Calculations

MOBILE EMISSION LABORATORY CONTINUOUS GASEOUS MEASUREMENTS SUMMARY Client: **Desert View Power** Condition: Unit: Load: > 90% Location: Mecca Date 9/10/2020 O2% CO2% 20 Analyzer Range: 20 Span Value: 10.48 10.48 O2% CO2% As Found 10.51 10.57 Linearity 0.1% 0.4% <2% Pass 9/10/2020 02% CO2% 1 -HCL-U1 Analyzer Range: 20 20 Span Value: 10.48 10.48 Pre test Direct Zero 0.00 0.02 Pre test Direct Span 10.51 10.57 System Zero 0.03 0.06 System Span 10.48 10.56 Average 8.41 12.08 0.05 System Zero 0.05 10.46 System Span 10.48 0.00 Post test Direct Zero 0.02 Post test Direct Span 10.51 10.56 Corrected Conc. 8.41 12.05 System Bias Check Zero Pre-test 0.14% 0.31% < 5% **PASS** Zero Post-test 0.23% 0.25% < 5% **PASS** Span Pre-test 0.00% 0.37% < 5% **PASS** -0.08% Span Post-test -0.01% <5% **PASS**

9/10/2020	O2%	CO2%			
2-CEM-U1					
Analyzer Range:	20	20			
Span Value:	10.48	10.48			
Pre test Direct Zero	0.00	0.02			
Pre test Direct Span	10.51	10.56			
System Zero	0.05	0.05			
System Span	10.46	10.48			
Raw concentration	8.37	12.09			
System Zero	0.04	0.06			
System Span	10.41	10.53			
Post test Direct Zero	-0.01	0.02			
Post test Direct Span	10.44	10.60			
Corrected Conc.	8.40	12.07			
System Bias Check					
Zero Pre-test	0.23%	0.25%		< 5%	PASS
Zero Post-test	0.21%	0.30%		< 5%	PASS
Span Pre-test	-0.08%	-0.01%		< 5%	PASS
Span Post-test	-0.38%	0.24%		<5%	PASS

9/10/2020	O2%	CO2%	NOx ppm	CO ppm		
3-CEM-U1						
Analyzer Range:	20	20	0	0		
Span Value:	10.48	10.48	0.00	0.00		
Pre test Direct Zero	-0.01	0.02	0.00	0.00		
Pre test Direct Span	10.44	10.60	0.00	0.00		
System Zero	0.03	0.05	0.00	0.00		
System Span	10.31	10.50	0.00	0.00		
Raw concentration	8.16	12.12				
System Zero	0.03	0.06				
System Span	10.17	10.50				
Post test Direct Zero	-0.02	0.02				
Post test Direct Span	10.32	10.55				
Corrected Conc.	8.34	12.10				
System Bias Check						
Zero Pre-test	0.16%	0.26%			< 5%	PASS
Zero Post-test	0.13%	0.30%			< 5%	PASS
Span Pre-test	-0.86%	0.11%			< 5%	PASS
Span Post-test	-1.55%	0.12%			<5%	PASS

Appendix B.2.2 Unit 1 Hydrogen Chloride Calculations

EPA METHOD 26A SOURCE TEST

DATA AND WORKSHEET

Client	Desert View Pow	er Parameter		Full Load
Loaction	Mecca	Fuel		Biomass
Unit	1	Data By		DW
Test Number	1-HCL-U1	2-HCĹ-U1	3-HCL-U1	Average
Reference Temperature, F	68	68	68	
Test Date	9/10/2020	9/10/2020	9/10/2020	
Sample Train	29-WCS	29-WCS	29-WCS	-
Pitot Factor	0.840	0.840	0.840	***
Meter Calibration Factor	1.009	1.009	1.009	-
Stack Area (sq ft)	38.84	38.84	38.84	-
Sample Time (Min)	120	120	120	120
Barometric Pressure (in Hg)	30.10	30.10	30.10	30.10
Nozzle Diam (in)	0.221	0.221	0.221	0.221
Start/Stop Time	553/758	822/1027	1230/1435	
Stack Pressure (iwg)	0.32	0.32	0.32	0.32
Delta P (iwg)	1.031	1.036	1.023	1.030
Meter Pressure (iwg)	1.36	1.38	1.39	1.38
Stack Temperature (F)	400.1	408.5	410.1	406.2
Meter Temperature (F)	82.9	101.5	108.3	97.6
Meter Volume (acf)	75.896	78.404	78.783	77.694
Liquid Volume (ml)	232.5	249.5	243.3	241.8
Stack O2 (%)	8.41	8.40	8.34	8.38
Stack CO2 (%)	12.05	12.07	12.10	12.08
Standard Sample Volume (SCF)	75.160	75.081	74.543	74.928
Moisture Fraction	0.127	0.136	0.133	0.132
Molecular Weight (wet)	28.70	28.60	28.63	28.65
Stack Gas Velocity (ft/sec)	72.61	73.27	72.83	72.90
Stack Flow Rate (wacfm)	169,215	170,739	169,731	169,895
Stack Flow Rate (dscfm)	91,227	90,308	89,830	90,455
Isokinetic Ratio (%)	100.07	100.98	100.79	100.61
mg/sample	39.4	39.4	35.3	38.0
mg/dscm	18.51	18.53	16.72	17.92
ppm (as HCl)	12.20	12.21	11.02	11.81
Ib/hr (as HCI)	6.32	6.26	5.62	6.07
MMBtu/Hr	383 0.017	383	383	383
Lb/MMBtu	0.017	0.016	0.015	0.016

		-	1-HCL-U1						2	2-HCL-U1						~	3-HCI -111			
	ФD	(dP)^.5	HP	Ts	T	Tm		dЪ	(dP)^.5	HP	Ts	Tm	Ę		d.D	(dP)^.5	HP	Ts	Tm	l u
ν.	1.30	1.140	1.6	400	74	75	5	1.20	1.095	1.6	400	8	93	5	1.10	1.049	1.4	408	100	103
4		1.000	1.3	399	72	74	4		1.049	1.5	401	06	93	4	1.20	1.095	1.6	409	101	104
3		0.990	1.2	400	73	75	3		1.049	1.5	403	91	94	3	1.00	1.000	1.3	409	100	104
2		1.000	1.3	400	72	75	2		1.000	1.4	404	93	96	2	1.00	1.000	1.3	409	100	105
-	1.00	1.000	1.3	400	72	9/	1	86.0	0.66.0	1.3	402	94	86	1	0.97	0.985	1.3	410	101	901
S		1.095	1.5	400	73	11	S		1.049	1.5	403	96	66	5	1.00	1.000	1.3	410	102	107
4		1.140	1.6	400	73	78	4	1.20	1.095	1.6	404	26	66	4	1.20	1.095	1.6	410	103	107
3		1.049	1.4	400	74	78	3	1.10	1.049	1.5	406	26	100	r	1.20	1.095	1.6	411	105	111
2	1.00	1.000	1.3	400	75	79	2	1.00	1.000	1.4	408	86	101	2	1.00	1.000	1.4	410	105	112
	0.98	066.0	1.3	399	92	80	1	0.95	0.975	1.3	408	86	102	1	0.95	0.975	1.3	410	106	113
5		0.660	1.3	400	77	81	5	1.20	1.095	1.6	408	86	103	5	1.10	1.049	1.5	410	107	112
4	0.87	0.933	1.1	399	78	82	4	1.10	1.049	1.5	409	86	103	4	1.00	1.000	1.4	410	107	112
3	0.83	0.911	1.1	399	78	84	3	1.10	1.049	1.4	409	86	104	3	0.93	0.964	1.3	410	108	112
2	0.87	0.933	1.1	399	79	82	2	0.94	0.970	1.2	409	86	104	2	0.84	0.917	1.1	411	108	112
1	0.85	0.922	1.1	399	80	98	1	0.90	0.949	1.2	410	66	103	1	0.80	0.894	1.1	410	107	112
5		1.049	1.5	400	83	87	5	0.98	0.990	1.3	409	100	104	S	1.00	1.000	1.4	411	107	112
4	1.20	1.095	1.6	400	84	88	4	0.92	0.959	1.2	411	100	104	4	1.10	1.049	1.5	410	107	1111
33	1.00	1.000	1.4	400	85	68	3	98.0	0.927	1.1	410	101	104	3	1.00	1.000	1.4	410	108	111
2	0.95	0.975	1.3	400	98	96	2	0.83	0.911	1.1	410	103	106	2	86.0	0.66.0	1.3	411	107	112
1	0.92	0.959	1.2	401	85	90	1	0.81	0.900	1.1	411	103	107	T	0.94	0.970	1.3	411	108	112
κ	1.10	1.049	1.5	402	98	06	5	1.10	1.049	1.4	410	104	108	3	1.20	1.095	1.6	410	107	113
4		1.000	1.4	403	98	91	4	1.20	1.095	1.6	411	104	108	4	1.10	1.049	1.5	410	107	114
m		1.049	1.5	402	98	91	m	1.10	1.049	1.4	412	104	108	3	1.00	1.000	1.4	410	107	113
2	1.20	1.095	1.6	401	8.7	91	2	0.98	0.990	1.3	412	104	108	2	1.00	1.000	1.4	410	107	113
1	0.98	0.090	1.3	400	87	92	1	0.95	0.975	1.2	412	103	108	-	0.93	0.964	1.3	410	107	113
\$	1.00	1.000	1.4	400	88	92	5	1.20	1.095	1.6	412	104	109	S	1.20	1.095	1.6	411	108	114
4	1.20	1.095	1.6	400	88	35	4	1.20	1.095	1.6	413	105	110	4	1.00	1.000	1.4	411	108	114
m	1.10	1.049	1.5	400	68	94	m	1.10	1.049	1.4	412	105	108	ς,	1.10	1.049	1.5	410	108	114
2	0.97	0.985	1.3	401	68	94	2	1.00	1.000	1.3	413	104	109	7	1.00	1.000	1.4	410	108	114
	0.95	0.975	1.3	400	96	94		0.97	0.985	1.3	413	105	110		0.92	0.959	1.2	410	107	113
Average		1.0308	1.363	400.1	82	82.9	Average		1.0358	1.380	408.5	101.5	Γ	Average		1.0227	1.390	410.1	108.3	m
			Meter Vol	4	dmI					Meter Vol		dmI					Meter Vol	dwI	duI	
Delta P (iwg)	(B.	1.031	339.51	983.7	764.7	219.0	Delta P (iwg)	(g)	1.036	417	٠,	677.1	239.7	Delta P (iwg)	•	1.023	497	979.1	774.1	205.0
Meter Pressure (iwg)	ure (iwg)	1.363	415.406	796.2	747.4	48.8	Meter Pressure (iwg)	sure (iwg)	1.380	495.404	722.9	696.2	7.92	Meter Pressure (iwg)	rre (iwg)	1.390	575.783	837.0	766.7	70.3
Stack Temp	Stack Temperature (F)	400.133	75.896	654.9	654.2	0.7	Stack Tem	Stack Temperature (F	7, 408.500	78.404	508.4	505.2	3.2	Stack Temperature (F	rature (F	410.067	78.783	655.6	655	9.0
Meter Tem	Meter Temperature (F)	82.917		1047.1	1033.1	14.0	Meter Tem	Meter Temperature (F)) 101.467		963.9	934	29.9	Meter Temperature (F	rature (F	108.267		956.5	939.1	17.4
Meter Volume (acf)	me (acf)	75.896			20	-50.0	Meter Volume (acf)	ime (acf)	78.404			50	-50.0	Meter Volume (acf)	ne (acf)	78.783			20	-50.0
Liquid Volume (ml)	ume (ml).	232.500				232.5	Liquid Volume (ml)	ume (ml)	249.500				249.5	Liquid Volume (ml)	ne (ml)	243.3				243.3

Appendix B.3 Unit 2 Calculations

Appendix B.3.1 Unit 2 Gaseous Calculations

MOBILE EMISSION LABORATORY CONTINUOUS GASEOUS MEASUREMENTS SUMMARY Client: **Desert View Power** Condition: Unit: Unit 2 Load: > 90% Location: Mecca Date 9/9/2020 02% CO2% Analyzer Range: 20 20 Span Value: 10.48 10.48 O2% CO2% 10.509 10.601 As Found Linearity 0.1% 0.6% <2% **Pass** 9/9/2020 02% CO2% 1-CEM-U2 Analyzer Range: 20 20 Span Value: 10.48 10.48 Pre test Direct Zero -0.01 0.02 Pre test Direct Span 10.51 10.60 0.07 System Zero 0.03 System Span 10.48 10.54 8.64 11.77 Average 0.02 0.04 System Zero System Span 10.43 10.42 -0.01 0.02 Post test Direct Zero 10.47 10.51 Post test Direct Span 8.66 Corrected Conc. 11.79 System Bias Check Zero Pre-test 0.13% 0.33% < 5% **PASS** Zero Post-test 0.08% 0.21% < 5% **PASS** Span Pre-test 0.00% 0.27% < 5% **PASS**

-0.26%

-0.32%

Span Post-test

<5%

PASS

9/9/2020	O2%	CO2%			
2-CEM-U2					
Analyzer Range:	20	20			
Span Value:	10.48	10.48			
Pre test Direct Zero	-0.01	0.02			
Pre test Direct Span	10.47	10.51			
System Zero	0.02	0.04			
System Span	10.43	10.42			
Raw concentration	8.48	11.81			
System Zero	0.01	0.05			
System Span	10.34	10.47			
Post test Direct Zero	-0.03	0.02			
Post test Direct Span	10.42	10.53			
·					
Corrected Conc.	8.56	11.86			
System Bias Check					
Zero Pre-test	0.08%	0.21%		< 5%	PASS
Zero Post-test	0.05%	0.24%		< 5%	PASS
Span Pre-test	-0.26%	-0.32%		< 5%	PASS
Span Post-test	-0.71%	-0.06%		<5%	PASS

9/9/2020	02%	CO2%			
3-CEM-U2					
Analyzer Range:	20	20			
Span Value:	10.48	10.48			
Pre test Direct Zero	-0.03	0.02			
Pre test Direct Span	10.42	10.53			
System Zero	0.01	0.05			
System Span	10.34	10.47			
Raw concentration	8.47	11.76			
System Zero	0.01	0.08			
System Span	10.24	10.44			
Post test Direct Zero	-0.03	0.02			
Post test Direct Span	10.30	10.53			
Corrected Conc.	8.63	11.80			
System Bias Check					
Zero Pre-test	0.05%	0.24%		< 5%	PASS
Zero Post-test	0.04%	0.41%		< 5%	PASS
Span Pre-test	-0.71%	-0.06%		< 5%	PASS
Span Post-test	-1.20%	-0.22%		<5%	PASS

Appendix B.3.2 Unit 2 Hydrogen Chloride Calculations

EPA METHOD 26A SOURCE TEST

DATA AND WORKSHEET

Client	Desert View Pow	er Parameter		Full Load
Loaction	Mecca	Fuel		Biomass
Unit	Unit 2	Data By		DW
Test Number	1-HCL-U2	2-HCL-U2	3-HCL-U2	Average
Reference Temperature, F	68	68	68	
Test Date	9/9/2020	9/9/2020	9/9/2020	
Sample Train	17-WCS	17-WCS	17-WCS	-
Pitot Factor	0.840	0.840	0.840	-
Meter Calibration Factor	0.984	0.984	0.984	-
Stack Area (sq ft)	38.84	38.84	38.84	-
Sample Time (Min)	120	120	120	120
Barometric Pressure (in Hg)	30.05	30.05	30.17	30.09
Nozzle Diam (in)	0.221	0.221	0.221	0.221
Start/Stop Time	810/1016	1030/1235	1247/1452	***
Stack Pressure (iwg)	0.30	0.30	0.30	0.30
Delta P (iwg)	1.013	1.014	1.022	1.016
Meter Pressure (iwg)	1.20	1.23	1.22	1.22
Stack Temperature (F)	373.7	373.7	380.4	375.9
Meter Temperature (F)	90.9	104.8	107.6	101.1
Meter Volume (acf)	79.764	82.891	82.517	81.724
Liquid Volume (ml)	237.7	231.3	242.7	237.2
Stack O2 (%)	8.66	8.56	8.63	8.61
Stack CO2 (%)	11.79	11.86	11.80	11.82
Standard Sample Volume (SCF)	75.761	76.799	76.385	76.315
Moisture Fraction	0.129	0.124	0.130	0.128
Molecular Weight (wet)	28.65	28.72	28.64	28.67
Stack Gas Velocity (ft/sec)	70.99	70.93	71.46	71.12
Stack Flow Rate (wacfm)	165,425	165,300	166,526	165,750
Stack Flow Rate (dscfm)	91,692	92,099	91,787	91,859
Isokinetic Ratio (%)	100.36	101.28	101.08	100.91
mg/sample	54.0	44.3	57.2	51.8
mg/dscm	25.17	20.37	26.44	23.99
ppm (as HCl)	16.59	13.43	17.43	15.82
lb/hr (as HCl)	8.64	7.02	9.08	8.25
MMBtu/Hr Lb/MMBtu	372	372	372	372
LD/IVIIVIDIU	0.023	0.019	0.024	0.022

		1-HCL-U2						2-]	2-HCL-U2						6	3-HCL-112			
ф	(dP)^.5	HP	Ts	T	Tm		ф	(dP)^.5	HP	Ts	Tm	Ĺ		Ф	(dP)^.5	HP	Ts	TmT	п
5 1.00	1.000	1.10	375	84	98	'n	1.00	1.000	1.30	375	101	100	ν.	1.10	1.049	1.30	373	105	108
4 0.98	0.660	1.10	376	84	87	4	1.10	1.049	1.40	374	102	103	4	1.20	1.095	1.40	372	105	108
	0.964	1.00	376	84	98	3	1.20	1.095	1.50	374	103	104	m	1.00	1.000	1.20	374	106	108
2 0.95	0.975	1.00	374	84	98	2	1.10	1.049	1.40	374	103	105	2	1.00	1.000	1.20	375	105	107
1 0.97	0.985	1.10	375	83	85	1	1.00	1.000	1.30	373	103	105	1	0.95	0.975	1.10	373	104	107
5 1.20	1.095	1.30	373	83	85	5	1.10	1.049	1.40	372	104	106	S	1.20	1.095	1.40	375	104	106
4 1.30	1.140	1.40	374	98	87	4	1.20	1.095	1.50	373	104	106	4	1.10	1.049	1.30	378	105	107
3 1.20	1.095	1.30	373	98	88	33	1.00	1.000	1.30	373	104	106	3	1.10	1.049	1.30	379	106	108
2 1.00	1.000	1.10	372	87	88	2	1.10	1.049	1.30	374	103	107	2	0.97	0.985	1.20	380	106	108
1 0.93	0.964	1.00	373	88	89	1	1.00	1.000	1.20	373	103	106		0.94	0.970	1.10	381	107	109
5 0.90	0.949	1.00	373	88	68	40	1.00	1.000	1.20	374	104	106	5	68.0	0.943	1.10	382	107	109
4 0.85	0.922	0.98	372	68	8	4	86.0	0.990	1.20	375	103	105	4	0.87	0.933	1.00	383	108	110
3 0.83	0.911	0.99	373	68	8	33	0.95	0.975	1.10	373	104	106	m	0.85	0.922	1.00	382	107	110
2 0.80	0.894	96'0	372	00	16	2	0.93	0.964	1.10	372	104	106	2	0.83	0.911	0.99	381	107	110
1 0.84	0.917	1.00	373	68	91	1	06:0	0.949	1.00	373	104	106	1	0.85	0.922	1.00	382	107	110
5 1.00	1.000	1.20	373	06	92	S	0.92	0.959	1.10	373	104	107	5	1.20	1.095	1.40	380	107	109
4 1.10	1.049	1.30	374	16	93	4	0.87	0.933	1.00	374	104	106	4	1.10	1.049	1.30	381	106	108
3 0.98	0.990	1.20	375	92	93	3	0.85	0.922	1.00	374	104	106	B	1.00	1.000	1.20	382	106	109
2 0.94	0.970	1.10	373	93	94	2	0.82	906'0	86.0	375	105	106	2	0.97	0.985	1.20	382	107	110
1 0.90	0.949	1.10	374	93	95	1	08.0	0.894	96.0	374	105	106	1	0.94	0.970	1.10	383	106	109
5 1.10	1.049	1.30	373	92	95	5	1.20	1.095	1.40	373	105	107	5	1.00	1.000	1.20	381	106	110
	1.095	1.50	374	93	95	4	1.30	1.140	1.60	374	105	107	4	1.10	1.049	1.30	382	106	110
	1.049	1.40	372	94	96	ĸ	1.10	1.049	1.30	375	105	107	w	1.00	1.000	1.20	383	105	109
	1.049	1.40	373	95	96	2	1.00	1.000	1.20	375	104	107	2	1.10	1.049	1.30	384	106	110
1 1.00	1.000	1.30	374	96	76	-	0.94	0.970	1.10	374	104	106	1	96.0	0.660	1.20	383	106	1111
5 1.00	1.000	1.30	376	95	97	5	1.10	1.049	1.30	372	104	106	S	1.10	1.049	1.30	385	107	111
	1.049	1.40	375	96	24	4	1.00	1.000	1.20	373	104	106	4	1.20	1.095	1.40	383	106	110
	1.095	1.50	374	96	92	co	1.00	1.000	1.20	373	103	106	3	1.10	1.049	1.30	384	106	110
2 1.10	1.049	1.40	373	26	86	2	1.10	1.049	1.30	374	104	107	2	1.10	1.049	1.30	385	106	111
1 1.00	1.000	1.30	373	86	86	Т	0.95	0.975	1.10	375	104	108	1	1.00	1.000	1.20	384	107	111
Average	1.0130	1.201	373.7	8	90.9	Average		1.0136	1.231	373.7	104.8	Γ	Average		1.0218	1.216	380.4	107.6	9,
		Meter Vol	dwI	Imp					Meter Vol	duI	dwJ	1				Meter Vol	dwI	dwI	
Delta P (iwg)		182.100	928.4	674.6	253.8	Delta P (iwg)	g)	1.014	264.5	985.4	762.7		Delta P (iwg)	<u> </u>	1.022	350.4	936.6	692.6	244.0
Meter Pressure (iwg)			675.2	668.1	7.1	Meter Pressure (iwg)	ure (iwg)	1.231	347.391	788.1	754.8	33.3 N	Meter Pressure (iwg)	re (iwg)	1.216	432.917	717.2	704.8	12.4
Stack Temperature (F)		79.764	509.5	508.2	1.3	Stack Temp	Temperature (F)	373.667	82.891	655.0	653.4		Stack Temperature (F	rature (F	380.400	82.517	510.0	507.1	2.9
Meter Temperature (F)			993.9	968.4	25.5	Meter Temperature (F)	perature (F)	104.800		1033.1	1009.4	23.7 №	Meter Temperature (F	erature (F	107.583		955.1	921.7	33.4
Meter Volume (acf)				20	-50.0	Meter Volu	Volume (acf)	82.891			20	-50.0 N	Meter Volume (acf)	ne (acf)	82.517			50	-50.0
Liquid Volume (ml)	237.700				237.7	Liquid Volume (ml)	ıme (ml)	231.300				231.3 I	Liquid Volume (ml)	ne (ml)	242.7				242.7

Appendix B.4 MMBtu/hr Calculations

2019 Annual Average MMBtu/Hr Calculation

Period Hours	17,520		
Boiler #1 Operating Hours	7,856		
Boiler #2 Operating Hours	8,004		
Total Operating Hours	15,860		
Gross Generation	389,493		
Net Generation	342,279	`	
Hazen Fuel Analysis	7,919	HHV Btu	
Hazen Fuel Analysis		LHV Btu	
2019 Fuel Records	375,296	tons purchased	
	7,219	System loss	
	7,316	Net change in inve	ntory (final - initial)
	360,760	tons consumed	
_	0.93	tons/MWh	Gross
Ĺ	1.05	tons/MWh	Net
	721,520,347	pounds consumed	
	5,713,388,931,067	Btu wood	HHV
	0	Btu wood	LHV
	5,713,389	MMBtu wood	HHV
	0	MMBtu wood	LHV
	•	MMBtu gas	1.10%
		operating hours	
Annual avg, Units 1 & 2		MMBtu/hr	HHV
Annual avg, Units 1 & 2	4	MMBtu/hr	LHV

UNIT 1

Average MMBtu/Hr Calculation					1
Stack test date: 9/1	0/2020				
Avg daily steam production	, Unit 1	207.9	kpph		Average daily value
Avg daily steam production	, Unit 2	205.2	kpph		Average daily value
Burn rate during stack test (a	annual)	1.05			
Boiler #1 Operating	g Hours	24			
Boiler #2 Operating	g Hours	24			
Net Gene	eration	1,078	MWh		Daily net MW
Fuel A	nalysis	8,048	HHV Btu		
Fuel A	nalysis	Ð	Divetu		
Test	ed Unit	208	kpph		
Fuel consu	mption	1,136	tons consumed total		
Fuel consumption, test	ed unit	572	tons consumed total		
		9,203,502,050	Btu wood	HHV	
		0	per web i	LITY	
			MMBtu wood	HHV	
		0	AndEcowsod	LH J	
		0	MMBtu gas	0.00%	
			operating hours		
Heat input during test (teste	ed unit)	383	MMBtu/hr	HHV	
Hear input during test (reste	d unit)	0	MMBtu/hr	LHV	

UNIT 2

Average MMBtu/Hr Calculation			\neg
Stack test date: 9/9/2020			
Avg daily steam production, Unit 1	205.6 kpph		Average da
Avg daily steam production, Unit 2	207.9 kpph		Average do
Burn rate during stack test (annual)	1.05		
Boiler #1 Operating Hours	24		
Boiler #2 Operating Hours	24		
Net Generation	1,080 MWh		Daily net N.
Fuel Analysis	7,789 HHV Btu		
Fuel Analysis	O LHV Stu		
Tested Unit	208 kpph		
Fuel consumption	1,138 tons consumed total		
Fuel consumption, tested unit	572 tons consumed total		
	8,916,053,515 Btu wood	HHV	
	0 Btu wood	LHV	
	8,916 MMBtu wood	HHV	
	6 MMB u wood	india .	
	0 MMBtu gas	0.00%	
	24 operating hours		
Heat input during test (tested unit)	372 MMBtu/hr	HHV	
Heat input during test (tested unit)	0 MMBtu/hr	LHV	

APPENDIX C QUALITY ASSURANCE

Appendix C.1 Quality Assurance Program Summary

QUALITY ASSURANCE PROGRAM SUMMARY

As part of Montrose Air Quality Services, LLC (MAQS) ASTM D7036-04 certification, MAQS is committed to providing emission related data which is complete, precise, accurate, representative, and comparable. MAQS quality assurance program and procedures are designed to ensure that the data meet or exceed the requirements of each test method for each of these items. The quality assurance program consists of the following items:

- Assignment of an Internal QA Officer
- Development and use of an internal QA Manual
- Personnel training
- Equipment maintenance and calibration
- Knowledge of current test methods
- Chain-of-custody
- QA reviews of test programs

Assignment of an Internal QA Officer: MAQS has assigned an internal QA Officer who is responsible for administering all aspects of the QA program.

<u>Internal Quality Assurance Manual</u>: MAQS has prepared a QA Manual according to the requirements of ASTM D7036-04 and guidelines issued by EPA. The manual documents and formalizes all of MAQS QA efforts. The manual is revised upon periodic review and as MAQS adds capabilities. The QA manual provides details on the items provided in this summary.

<u>Personnel Testing and Training</u>: Personnel testing and training is essential to the production of high quality test results. MAQS training programs include:

- A requirement for all technical personnel to read and understand the test methods performed
- A requirement for all technical personnel to read and understand the MAQS QA manual
- In-house testing and training
- Quality Assurance meetings
- Third party testing where available
- Maintenance of training records.

Equipment Maintenance and Calibration: All laboratory and field equipment used as a part of MAQS emission measurement programs is maintained according to manufacturer's recommendations. A summary of the major equipment maintenance schedules is summarized in Table 1. In addition to routine maintenance, calibrations are performed on all sampling equipment according to the procedures outlined in the applicable test method. The calibration intervals and techniques for major equipment components is summarized in Table 2. The calibration technique may vary to meet regulatory agency requirements.

<u>Knowledge of Current Test Methods</u>: MAQS maintains current copies of EPA, ARB, and SCAQMD Source Test Manuals and Rules and Regulations.

<u>Chain-of-Custody</u>: MAQS maintains chain-of-custody documentation on all data sheets and samples. Samples are stored in a locked area accessible only to MAQS source test personnel. Data sheets are kept in the custody of the originator, program manager, or in locked storage until return to MAQS office. Electronic field data is duplicated for backup on secure storage media. The original data sheets are used for report preparation and any additions are initialed and dated.

<u>QA Reviews:</u> Periodic field, laboratory, and report reviews are performed by the in-house QA coordinator. Periodically, test plans are reviewed to ensure proper test methods are selected and reports are reviewed to ensure that the methods were followed and any deviations from the methods are justified and documented.

ASTM D7036-04 Required Information

Uncertainty Statement

Montrose is qualified to conduct this test program and has established a quality management system that led to accreditation with ASTM Standard D7036-04 (Standard Practice for Competence of Air Emission Testing Bodies). Montrose participates in annual functional assessments for conformance with D7036-04 which are conducted by the American Association for Laboratory Accreditation (A2LA). All testing performed by Montrose is supervised on site by at least one Qualified Individual (QI) as defined in D7036-04 Section 8.3.2. Data quality objectives for estimating measurement uncertainty within the documented limits in the test methods are met by using approved test protocols for each project as defined in D7036-04 Sections 7.2.1 and 12.10. Additional quality assurance information is presented in the report appendices.

Performance Data

Performance data are available for review.

Qualified Personnel

A qualified individual (QI), defined by performance on a third party or internal test on the test methods, will be present on each test event.

Plant Entry and Safety Requirements

Plant Entry

All test personnel are required to check in with the guard at the entrance gate or other designated area. Specific details are provided by the facility and project manager.

Safety Requirements

All personnel shall have the following personal protective equipment (PPE) and wear them where designated:

- Hard Hat
- Safety Glasses
- Steel Toe Boots
- Hearing Protection
- Gloves
- High Temperature Gloves (if required)

The following safety measures will be followed:

- Good housekeeping
- SDS for all on-site hazardous materials
- Confine selves to necessary areas (stack platform, mobile laboratory, CEMS data acquisition system, control room, administrative areas)
- Knowledge of evacuation procedures

Each facility will provide plant specific safety training.

TABLE 1 EQUIPMENT MAINTENANCE SCHEDULE

Equipment	Acceptance Limits	Frequency of Service	Methods of Service
Pumps	Absence of leaks Ability to draw manufacturers required vacuum and flow	As recommended by manufacturer	 Visual inspection Clean Replace parts Leak check
Flow Meters	Free mechanical movement	As recommended by manufacturer	 Visual inspection Clean Calibrate
Sampling Instruments	Absence of malfunction Proper response to zero span gas	As recommended by manufacturer	As recommended by manufacturer
Integrated Sampling Tanks	1. Absence of leaks	Depends on nature of use	Steam clean Leak check
Mobile Van Sampling System	1. Absence of leaks	Depends on nature of use	 Change filters Change gas dryer Leak check Check for system contamination
Sampling lines	Sample degradation less than 2%	After each test series	Blow dry, inert gas through line until dry

TABLE 2
MAJOR SAMPLING EQUIPMENT CALIBRATION REQUIREMENTS

Sampling Equipment	Calibration Frequency	Calibration Procedure	Acceptable Calibration Criteria
Continuous Analyzers	Before and After Each Test Day	3-point calibration error test	< 2% of analyzer range
Continuous Analyzers	Before and After Each Test Run	2-point sample system bias check	< 5% of analyzer range
Continuous Analyzers	After Each Test Run	2-point analyzer drift determination	< 3% of analyzer range
CEMS System	Beginning of Each Day	leak check	< 1 in. Hg decrease in 5 min. at > 20 in. Hg
Continuous Analyzers	Semi-Annually	3-point linearity	< 1% of analyzer range
NO _x Analyzer	Daily	NO ₂ -> NO converter efficiency	> 90%
Differential Pressure Gauges (except for manometers)	Semi-Annually	Correction factor based on 5-point comparison to standard	+/- 5%
Differential Pressure Gauges (except for manometers)	Bi-Monthly	3-point comparison to standard, no correction factor	+/- 5%
Barometer	Semi-Annually	Adjusted to mercury-in- glass or National Weather Service Station	+/- 0.1 inches Hg
Dry Gas Meter	Semi-Annually	Calibration check at 4 flow rates using a NIST traceable standard	+/- 2%
Dry Gas Meter	Bi-Monthly	Calibration check at 2 flow rates using a NIST traceable standard	+/- 2% of semi-annual factor
Dry Gas Meter Orifice	Annually	4-point calibration for $\Delta H@$	
Temperature Sensors	Semi-Annually	3-point calibration vs. NIST traceable standard	+/- 1.5%

Note: Calibration requirements will be used that meet applicable regulatory agency requirements.

Appendix C.2 CARB, SCAQMD, and STAC Certifications

September 6, 2019

Mr. John Peterson Montrose Air Quality Services, LLC 1631 E. Saint Andrew Place Santa Ana, CA 92705

Subject: LAP Approval Notice

Reference # 96LA1220

Dear Mr. Peterson:

We have reviewed your renewal letter under the South Coast Air Quality Management District's Laboratory Approval Program (LAP). We are pleased to inform you that your firm is approved for the period beginning September 30, 2019, and ending September 30, 2020 for the following methods, subject to the requirements in the LAP Conditions For Approval Agreement and conditions listed in the attachment to this letter:

 Methods 1-4
 Methods 5.1, 5.2, 5.3, 6.1

 Methods 10.1 and 100.1
 Methods 25.1 and 25.3 (Sampling)

USEPA CTM-030 and ASTM D6522-00 Rule 1121/1146.2 Protocol

Rule 1420/1420.1/1420.2 - (Lead) Source and Ambient Sampling

Your LAP approval to perform nitrogen oxide emissions compliance testing for Rule 1121/1146.2 Protocols includes satellite facilities located at:

McKenna BoilerNoritz America Corp.Ajax Boiler, Inc.1510 North Spring Street11160 Grace Avenue2701 S. Harbor Blvd.Los Angeles, CA 90012Fountain Valley, CA 92708Santa Ana, CA 92704

Laundry Building of VA Greater Los Angeles Healthcare System 508 Constitution Avenue Los Angeles, CA 90049

Thank you for participating in the LAP. Your cooperation helps us to achieve the goal of the LAP: to maintain high standards of quality in the sampling and analysis of source emissions. You may direct any questions or information to LAP Coordinator, Glenn Kasai. He may be reached by telephone at (909) 396-2271, or via e-mail at gkasai@aqmd.gov.

Sincerely,

Dipankar Sarkar Program Supervisor Source Test Engineering

D. Sarken

DS:GK/gk Attachment

190906 LapRenewalRev.doc

American Association for Laboratory Accreditation

Accredited Air Emission Testing Body

A2LA has accredited

MONTROSE AIR QUALITY SERVICES

In recognition of the successful completion of the joint A2LA and Stack Testing Accreditation Council (STAC) evaluation process, this laboratory is accredited to perform testing activities in compliance with ASTM D7036;2004 - Standard Practice for Competence of Air Emission Testing Bodies.

Vice President, Accreditation Services
For the Accreditation Council
Certificate Number 3925.01
Valid to February 28, 2022

Presented this 11th day of February 2020

This accreditation program is not included under the A2LA ILAC Mutual Recognition Arrangement.

MONTROSE
AIR QUALITY SERVICES

Appendix C.3 Individual QI Certifications

CERTIFICATE OF COMPLETION

Dave Wonderly

This document certifies that this individual has passed a comprehensive examination and is now a Qualified Individual (QI) as defined in Section 8.3 of ASTM D7036-04 for the following method(s): Source Evaluation Society Group 1: EPA Manual Gas Volume and Flow Measurements and Isokinetic Particulate Sampling Methods

Certificate Number: 002-2018-66

DATEOF

ISSUE:

11/29/18

DATE OF EXPIRATION:

11/29/23

Lote Stooth

Tate Strickler, Accreditation Director

CERTIFICATE OF COMPLETION

Dave Wonderly

This document certifies that this individual has passed a comprehensive examination and is now a Qualified Individual (QI) as defined in Section 8.3 of ASTM D7036-04 for the following method(s):

Source Evaluation Society Group 2: EPA Manual Gaseous Pollutants Source Sampling Methods

Certificate Number: 002-2018-67

DATE OF ISSUE:

11/29/18

DATE OF EXPIRATION:

Tate Strickler, Accreditation Director

11/29/23

CERTIFICATE OF COMPLETION

Dave Wonderly

This document certifies that this individual has passed a comprehensive examination and is now a Qualified Individual (QI) as defined in Section 8.3 of ASTM D7036-04 for the following method(s):

Source Evaluation Society Group 3: EPA Gaseous Pollutants Instrumental Methods

Certificate Number: 002-2018-60

DATE OF ISSUE:

9/28/18

DATE OF EXPIRATION:

Tate Strickler, Accreditation Director

9/28/23

APPENDIX D TEST PLAN

TEST PLAN FOR 2020 EMISSIONS PERFORMANCE TESTING AT THE DESERT VIEW POWER PLANT

Prepared For:

Desert View Power

62-300 Gene Welmas Dr. Mecca, California 92254-0758

For Submittal To:

South Coast Air Quality Management District

21865 Copley Drive Diamond Bar, California 91765-4178

Prepared By:

Montrose Air Quality Services, LLC 1631 E. St. Andrew PL. Santa Ana, California 92705 (714) 279-6777

Dave Wonderly

Production Date: January 13, 2020

Document Number: W002AS-678786-PP-86

CONFIDENTIALITY STATEMENT

Except as otherwise required by law or regulation, this information contained in this communication is intended exclusively for the individual or entity to which it is addressed. This communication may contain information that is proprietary, privileged or confidential or otherwise legally exempt from disclosure. If you are not the named addressee, you are not authorized to read, print, retain, copy, or disseminate this message or any part of it.

REVIEW AND CERTIFICATION

I certify that, to the best of my knowledge, the information contained in this document is complete and accurate and conforms to the requirements of the Montrose Quality Management System and ASTM D7036-04.

Signature:	Pail Worl	Date:	1/15/2020
Name:	Dave Wonderly	Title:	Client Project Manager
contained herein	. I hereby certify that to t curate and conforms to the	he best of my	nd other appropriate written materials with knowledge the presented material is s of the Montrose Quality Managemen
Signature:	MAH McC	Date:	1/15/2020
Name:	Matt McCune	Title:	Regional Vice President

TABLE OF CONTENTS

<u>SE</u>	CTION		<u>PAGE</u>
1.0	INTR	RODUCTION	5
2.0	UNIT	DESCRIPTION	6
	2.1	SAMPLE LOCATIONS	7
	2.2	UNIT OPERATION	7
3.0	TES	T PROCEDURES	8
	3.1	CONTINUOUS GASEOUS MEASUREMENTS	9
	3.2	PARTICULATE MEASUREMENTS	10
	3.3	SULFUR DIOXIDE	10
	3.4	HYDROCARBON	_
	3.5	HYDROGEN CHLORIDE MEASUREMENTS	11
	3.6	VELOCITY AND MOISTURE	
	3.7	FUEL ANALYSIS	
	3.8	RELATIVE ACCURACY TEST AUDIT	
	3.9	TEST SCHEDULE	13
4.0	REP	ORTING	14
LIS	T OF A	APPENDICES	
Α	QUA	LITY ASSURANCE AND CERTIFICATIONS	15
В	SAM	IPLE LOCATION VERIFICATION DATA	25
С	SITE	SAFETY PLAN	94
LIS	T OF T	TABLES	
TAE	3LE 2-1	1 CONTINUOUS EMISSION MONITOR SYSTEM	6
TAE	BLE 3-	1 PROPOSED TEST MATRIX PER UNIT	8
TAE	BLE 3-2	2 EPA METHOD 5 ANALYSES	10
TAE	BLE 3-3	3 TEST SCHEDULE	13
TAE	BLE 4-	1 REPORT FORMAT	14
LIS	T OF F	FIGURES	
FIG	IIDE 2	2.1 DESERT VIEW DOWER SAMPLE LOCATION	7

1.0 INTRODUCTION

Montrose Air Quality Services, LLC (MAQS) has been contracted by Desert View Power to conduct annual emissions compliance testing on two Fluid Bed Boilers, and a relative accuracy test audit (RATA) of the continuous emissions monitoring system (CEMS) at the Desert View Power Plant located in Mecca, California. MAQS will conduct testing to comply with U.S. Environmental Protection Agency Operating Permit NSR 4-4-11;SE 87-01 including amendments through August 14, 2003: 7th Amendment Title V permit to operate CB-OP 99-01 dated 8/1/2000 and 40 CFR 60, Appendix F. This test plan presents the testing procedures, a description of the sample locations and a summary of quality assurance procedures.

David Wonderly will coordinate the testing for MAQS and can be reached at (714) 279-6777. The on-site test team will consist of a Project Manager whose responsibilities include interfacing with facility personnel, operating the mobile emission measurement laboratory, and performing data entry as well as Technician(s) responsible for all stack responsibilities. A Qualified Individual, as defined in ASTM D7036-04, will be on-site for all methods performed.

Emissions tests will be performed on each Biomass fired boiler as specified in the permit for:

- Particulate
- NO_x, CO and SO₂
- Hydrocarbons
- Hydrogen Chloride (HCI)
- Method 19 F-Factor Using ASTM D6323 and ASTM E711 for Fuel BTU/lb
- Volumetric Flow Rate
- Oxygen and Carbon Dioxide concentration
- Flue gas moisture content

A relative accuracy test audit will be performed to satisfy the requirements of 40 CFR 60, Appendix F, as part of the quarterly CEMS testing. The Continuous Emissions Monitoring System (CEMS) Relative Accuracy Test Audit includes NO_x, CO and SO₂.

2.0 UNIT DESCRIPTION

The Desert View Power Plant consists of two 297 MMBtu/hour, circulating bed, biomass-fired boilers, and combined unit are designed to produce 47 MW of net electrical output. Each unit is equipped with the following pollution control systems:

- An ammonia injection system for control of NO_x emissions;
- Cyclonic mixing of injected ammonia with flue gas to provide for a minimum amount of ammonia slip (emission);
- A limestone injection system to limit emissions of SO₂;
- A hydrated lime injection system to limit emissions of HCL;
- A reverse air baghouse to restrict opacity and emissions of sulfates and particulate to very low levels.

The plant CEM system for each unit includes measurements of NO_x, CO, O₂, O₂ wet, SO₂, CO₂, flow and opacity. It is an extractive system with a heated line extending from the probe to the CEM unit. Table 2-1 presents the current CEMS configuration.

TABLE 2-1
CONTINUOUS EMISSION MONITOR SYSTEM
DESERT VIEW POWER PLANT

Species	Manufacturer	Model	Range
NO_x	CAI	ZRE-5 Multi Component Analyzer	100 and 500 ppm
СО	CAI	ZRE-5 Multi Component Analyzer	100 and 500 ppm
O ₂ Dry	CAI	ZRE-5 Multi Component Analyzer	25%
SO ₂	CAI	ZRE-5 Multi Component Analyzer	50 and 500 ppm
CO_2	CAI	ZRE-5 Multi Component Analyzer	20%
O ₂ Wet	AMETEK	Thermox 2000	25%
Flow	Diet Greg Standard		Msdcfh
Opacity	Monitor Labs	Lighthawk 560	100%

2.1 SAMPLE LOCATIONS

Samples will be collected from the transition ducts to the stack. Carnot Technical Services, Inc. conducted three dimensional flow testing and stratification testing on the transition exhaust ducts on each unit. This testing was conducted in accordance to SCAQMD chapter X section 1 and 13 and will be presented in the report titled "Stack Gas Stratification and Absence of Flow Disturbance Testing at Desert View Power Mecca Project" (R106E622.T) submitted to SCAQMD in October of 1994. The sample locations met all the requirements. Copies of the results from that report can be found in Appendix B .All testing for both Unit 1 and 2 will be done at the sample location presented in Figure 2-1.

Stack

O A
O B
O B
O C
O D
O C
O D
O E
O F

Facing South

FIGURE 2-1
DESERT VIEW POWER SAMPLE LOCATION

2.2 UNIT OPERATION

The tests will be conducted at or near maximum steady state unit load conditions. Limestone injection rate, fuel combustion rate, ammonia injection rate, ash handling operations, excess air level, combustion air distribution, and combustion temperature will all be set to maintain stable unit operation. Pertinent operating conditions will be recorded by Desert View Power personnel during the tests. Full load will be defined as greater than 267 MMBtu/hr of total (biomass and natural gas) heat input to the boiler.

3.0 TEST PROCEDURES

The test procedures to be used are listed in Table 3-1. Part of the gaseous plant emissions performance testing data will be used for CEMS RATA determinations. A minimum of nine reference method tests are required for all gaseous species relative accuracy (RA) determinations.

TABLE 3-1
PROPOSED TEST MATRIX PER UNIT
DESERT VIEW POWER MECCA PROJECT

Parameter	No. of Tests	Measurement Principle	Reference Method	Duration per Test
NO _x	9(1)	Chemiluminescence	EPA 7E	60/30 minutes
СО	9(1)	Non-Dispersive Infrared	EPA 10	60/30 minutes
O ₂ /CO ₂	9(1)	Non-Dispersive Infrared	EPA 3A	60/30 minutes
PM	3	Gravimetric	EPA 5	90 minutes
SO ₂	9(1)	Barium Thorin Titration	EPA 6	60/30 minutes
Hydrocarbons	2	GC/FID	SCAQMD 25.3	60 minute composite
HCL	3	Ion Chromatography	EPA 26A	120 minutes, minimum of 2 DSCM of sample volume
Fuel Sampling	Daily		ASTM D6323	Composite hourly samples
Fuel Btu/lb	Daily		ASTM E711	Composite hourly samples
Fuel Moisture	Daily		ASTM D3173	Composite hourly samples
Fuel Chlorine	Daily		ASTM E776	Composite hourly samples
Stack Gas Flow Rate		S-Type Pitot Traverse	EPA 2	
Moisture		Condensation/Gravimetric	EPA 4	

⁽¹⁾ Includes compliance and RATA test runs.

3.1 CONTINUOUS GASEOUS MEASUREMENTS

NO_x, O₂, CO₂ and CO will be measured according to EPA reference methods using MAQS continuous emissions monitoring system (CEM). NO_x, O₂, CO₂ and CO concentrations will be determined using MAQS mobile emission measurement laboratory. The laboratory is housed in an 18 foot trailer outfitted to provide a clean, quiet, environmentally controlled base for the testing operations. The laboratory has lighting, electrical distribution, air conditioning and heating to support the test instruments and provide for optimal test performance.

Concentrations of these gaseous species are measured using an extractive sampling system consisting of a heated stainless steel probe to minimize reactions, a heat traced Teflon sample line connected to a thermo-electrically cooled sample dryer. Following the dryer, the sample is drawn into a Teflon lined pump where it is pressurized and then filtered for delivery to the gas analysis portion of the system. Gaseous samples will be collected at a single point. Three minimum 60-minute compliance tests will be performed.

 NO_x concentration is determined using a California Analytical Instruments (CAI) chemiluminescence analyzer (model 600 Series). The analyzer has full scale ranges from 2.5 to 10,000 ppm. The analyzer is equipped with a vitreous carbon NO_2 - NO converter for the determination of total nitrogen oxides without interference from other nitrogen containing compounds.

Oxygen concentration is determined using a AMI electro-chemical cell analyzer (model # 201). The analyzer has three full scale ranges; 0-5%, 10%, and 25%. The cell contains an electrolytic fluid that reacts with oxygen to generate an electrical signal proportional to the concentration.

CO₂ is measured using a non-dispersive infrared analyzer manufactured by CAI (model # 100 Series). The analyzer has full scale ranges of 0-5%, 10%, 20% and 40%.

CO is measured using a non-dispersive infrared/gas filter correlation analyzer manufactured by TECO (model # 48i). The analyzer has user definable full scale ranges from of 0-10 to 0-10,000 ppm.

The analyzers and sampling system are subjected to a variety of calibration and quality assurance procedures including leak checks, linearity and calibration error determinations before sampling, and system bias and drift determinations as part of each test run. Data are corrected for any observed bias or drift in accordance with the reference methods.

3.2 PARTICULATE MEASUREMENTS

EPA method 5 sampling system will be used to measure the particulate emissions from both Desert View Power units. The sampling system consists of a nozzle, glass probe, 250°F heated filter, two impingers containing DI water, a third empty impinger and a fourth impinger containing silica gel.

The analysis for particulate is summarized in Table 3-2. Gravimetric Analysis will be performed on the probe/nozzle wash and filter.

TABLE 3-2 EPA METHOD 5 ANALYSES

Sample Component	Analysis Procedure	
Probe and Nozzle (Front 1/2)	Evaporation/gravimetric	
Heated Filter (83 mm)	Bake/gravimetric	

3.3 SULFUR DIOXIDE

Sulfur dioxide will be measured according to EPA Method 6. The first three runs will be 60 minutes and will be used to demonstrate compliance and as RATA runs. Subsequent RATA runs will consist of 30 minute tests per the Methods. A barium thorin titration of the hydrogen peroxide impinger samples will yield SO_2 concentrations for nine relative accuracy test runs. The sample system will consist of a heated glass probe connected to the impinger train with an un-heated Teflon sample line. All the unheated portion of the sample train will be recovered and analyzed. Prior to the titrimetric analysis, all SO_x samples will pass through an ion exchange resin. This removes interference associated with ammonium (NH_4^+) . The Method 6 train will not include the IPA impinger, which is provided in the method as an option. The H_2O_2 will absorb both SO_2 and SO_3 (if any). SO_3 will be counted as SO_2 .

3.4 HYDROCARBON

Samples for hydrocarbon analysis will be collected in clean 6-L Summa Canister and mini water impingers and analyzed according to SCAQMD 25.3. The samples will be analyzed by AtmAA Inc. in Calabasas, CA using TCA/FID or other qualified laboratory. Results will be reported as total non-methane hydrocarbons as carbon.

3.5 HYDROGEN CHLORIDE MEASUREMENTS

Triplicate hydrogen chloride (HCI), samples will be collected using EPA Method 26A. Sampling and analysis for HF and CI2 which is included in EPA Method 26A will not be performed. The sampling train consists of:

- A glass nozzle and heated glass probe heated to between 248°F and 273°F
- A Teflon Mat or quartz out-of-stack filter in a glass filter holder heated to 248°F ± 25°F
- Two impingers containing 100 ml of 0.1 N H₂SO₄ for collection of HCl
- One empty impinger
- An impinger containing silica gel

Samples are withdrawn isokinetically from the stack. The Teflon Mat or quartz-fiber filter collects particulate matter. The acidic absorbing solution collect gaseous HCl and is analyzed for HCl by ion chromatography.

The samples are recovered in the following sample fractions:

- 1. Back half of filter holder, H₂SO₄ Impinger Catch Weighed for moisture content and recovered with DI water into pre-cleaned HDPE bottle.
- 2. The filter and probe wash will not be recovered for this test program.

Quality assurance samples collected in the field are:

- A field blank
- A reagent blank: 200 ml of 0.1 N H₂SO₄
- A reagent blank: 200 ml of DI water

The samples will be analyzed by ion chromatography by AAC in Ventura or other qualified laboratory.

3.6 VELOCITY AND MOISTURE

Stack gas velocity and moisture content will be determined by EPA Methods 2 and 4 during the particulate test. Velocity traverses will be performed during each set of compliance tests (NO_x , CO, SO_2 and hydrocarbons) and for each RATA run.

3.7 FUEL ANALYSIS

Daily fuel samples will be collected by Desert View Power personnel. Hourly samples will be taken and composited by the lab prior to analysis. Sampling will be consistent with ASTM D6323 sample collection methodology. MAQS will send the samples out to be analyzed for higher heating value for heat rate calculations, for Btu/lb for calculating the HCL emissions in lb/MMBtu using ASTM E711, for moisture content using ASTM D3173 and for chlorine content using ASTM E776. Copies of the analysis will be included with the final report.

3.8 RELATIVE ACCURACY TEST AUDIT

Relative Accuracy tests will be performed for NO_x , SO_2 , CO and O_2 on sub systems of each unit's CEMS. Relative accuracy is determined by comparing the CEMS data to the corresponding reference method (RM) data over nine to twelve test runs. Nine 30-minute minimum tests will be performed for the NO_x , SO_2 , CO, and O_2 relative accuracy. Relative accuracy is expressed in terms of the absolute value of the mean of the difference between the monitor value and the reference method value. It is reported in terms of a percentage of the mean reference method value. The computational procedure is summarized by the following equations:

$$\overline{RM} = \frac{1}{n} \sum_{i=1}^{n} RM_{1}$$

$$\overline{d} = \sum_{i=1}^{n} d_{i}$$

$$i = 1$$

$$S_{d} = \begin{bmatrix} \sum_{i=1}^{n} d_{i}^{2} - \frac{\left(\sum_{i=1}^{n} d_{i}\right)^{2}}{n} \end{bmatrix}^{\frac{1}{2}}$$

$$CC = t_{0.975} \frac{S_d}{\sqrt{n}} \mathbf{1}$$

$$RA = \frac{\overline{d}/+/cc/}{\overline{RM}}x100$$

The RA will be determined for the monitoring systems in parts per million dry (ppm) and lb/hr.

3.9 TEST SCHEDULE

The scheduled test dates have been set for March 10 – March 14, 2020 for compliance and RATA testing. A proposed test schedule for on-site testing activities is shown in Table 3-3. This schedule is based on the number of tests and the required sample times.

TABLE 3-3 TEST SCHEDULE

Date	Unit No.	Test No.	Type of Test
3/10/2020	1		Set-up
3/11/2020	1	1-3 PM, 1-3 HCL 1-3 Comp RATA testing	Particulate Tests 1-3, HCL Tests 1-3 CEMS RATA and Compliance NO_x , SO_2 , CO &VOC Tests 1-3 Fuel Samples
3/12/2020	1	RATA testing Continued	CEMS RATA
3/13/2020	2	1-3 PM, 1-3 HCL 1-3 Comp RATA testing	Particulate Tests 1-3, HCL Tests 1-3 CEMS RATA and Compliance NO_x , SO_2 , CO &VOC Tests 1-3 Fuel Samples
3/14/2020	2	RATA testing Continued	CEMS RATA

4.0 REPORTING

MAQS will prepare a comprehensive emissions report that includes all raw data and calculations for the test program. The test format is presented in Table 4-1. The test report will be submitted within 45 days from completion of testing.

TABLE 4-1 REPORT FORMAT

Title page

Report Title
Prepared For
For Submittal To:
Author and reviewer names
Test Dates and Report Issue Date
Report Number

Review Page

Signatures of person who prepared the report and signature of person who reviewed the report

Table of Contents

Introduction and Summary

Identifies the client, source, reason for the test, test date(s), test personnel, client/source personnel, regulatory observers

Summarizes the results of the test, indicates applicable rules and pass/fail criteria and makes a statement regarding the test results

Outlines the organization of remainder of the report.

Table of analysis results

Unit Description

Describes the process which was tested Describes any applicable control equipment Test conditions

Test Description

Test methods, replicates, duration, calculations Test locations Test critique

Results

Re-states the results of the test and makes a statement regarding compliance with applicable regulations Results tables with more detail on individual test runs and supporting data

Appendices

A. Test and Laboratory Data
1. Test Location

Test Data (by type)
 Quality Assurance Data

a. Certification

Equipment Calibration

c. Calibration Gas Certificate

d. Chain of Custody

B. Process Operating Data

C. Measurement ProceduresD. Calculations

E. Instrument Strip Charts

APPENDIX A QUALITY ASSURANCE AND CERTIFICATIONS

QUALITY ASSURANCE PROGRAM SUMMARY

As part of Montrose Air Quality Services, LLC (MAQS) ASTM D7036-04 certification, MAQS is committed to providing emission related data which is complete, precise, accurate, representative, and comparable. MAQS quality assurance program and procedures are designed to ensure that the data meet or exceed the requirements of each test method for each of these items. The quality assurance program consists of the following items:

- Assignment of an Internal QA Officer
- Development and use of an internal QA Manual
- Personnel training
- Equipment maintenance and calibration
- Knowledge of current test methods
- Chain-of-custody
- QA reviews of test programs

Assignment of an Internal QA Officer: MAQS has assigned an internal QA Officer who is responsible for administering all aspects of the QA program.

<u>Internal Quality Assurance Manual</u>: MAQS has prepared a QA Manual according to the requirements of ASTM D7036-04 and guidelines issued by EPA. The manual documents and formalizes all of MAQS QA efforts. The manual is revised upon periodic review and as MAQS adds capabilities. The QA manual provides details on the items provided in this summary.

<u>Personnel Testing and Training</u>: Personnel testing and training is essential to the production of high quality test results. MAQS training programs include:

- A requirement for all technical personnel to read and understand the test methods performed
- A requirement for all technical personnel to read and understand the MAQS QA manual
- In-house testing and training
- Quality Assurance meetings
- Third party testing where available
- Maintenance of training records.

Equipment Maintenance and Calibration: All laboratory and field equipment used as a part of MAQS emission measurement programs is maintained according to manufacturer's recommendations. A summary of the major equipment maintenance schedules is summarized in Table 1. In addition to routine maintenance, calibrations are performed on all sampling equipment according to the procedures outlined in the applicable test method. The calibration intervals and techniques for major equipment components is summarized in Table 2. The calibration technique may vary to meet regulatory agency requirements.

<u>Knowledge of Current Test Methods</u>: MAQS maintains current copies of EPA, ARB, and SCAQMD Source Test Manuals and Rules and Regulations.

<u>Chain-of-Custody</u>: MAQS maintains chain-of-custody documentation on all data sheets and samples. Samples are stored in a locked area accessible only to MAQS source test personnel. Data sheets are kept in the custody of the originator, program manager, or in locked storage until return to MAQS office. Electronic field data is duplicated for backup on secure storage media. The original data sheets are used for report preparation and any additions are initialed and dated.

<u>QA Reviews:</u> Periodic field, laboratory, and report reviews are performed by the in-house QA coordinator. Periodically, test plans are reviewed to ensure proper test methods are selected and reports are reviewed to ensure that the methods were followed and any deviations from the methods are justified and documented.

ASTM D7036-04 Required Information

Uncertainty Statement

Montrose is qualified to conduct this test program and has established a quality management system that led to accreditation with ASTM Standard D7036-04 (Standard Practice for Competence of Air Emission Testing Bodies). Montrose participates in annual functional assessments for conformance with D7036-04 which are conducted by the American Association for Laboratory Accreditation (A2LA). All testing performed by Montrose is supervised on site by at least one Qualified Individual (QI) as defined in D7036-04 Section 8.3.2. Data quality objectives for estimating measurement uncertainty within the documented limits in the test methods are met by using approved test protocols for each project as defined in D7036-04 Sections 7.2.1 and 12.10. Additional quality assurance information is presented in Section 4.0.

Performance Data

Performance data are available for review.

Qualified Personnel

A qualified individual (QI), defined by performance on a third party or internal test on the test methods, will be present on each test event.

Plant Entry and Safety Requirements

Plant Entry

All test personnel are required to check in with the guard at the entrance gate or other designated area. Specific details are provided by the facility and project manager.

Safety Requirements

All personnel shall have the following personal protective equipment (PPE) and wear them where designated:

- Hard Hat
- Safety Glasses
- Steel Toe Boots
- Hearing Protection
- Gloves
- High Temperature Gloves (if required)

The following safety measures will be followed:

- Good housekeeping
- SDS for all on-site hazardous materials
- Confine selves to necessary areas (stack platform, mobile laboratory, CEMS data acquisition system, control room, administrative areas)
- Knowledge of evacuation procedures

Each facility will provide plant specific safety training.

TABLE 1 EQUIPMENT MAINTENANCE SCHEDULE

Equipment	Acceptance Limits	Frequency of Service	Methods of Service
Pumps	Absence of leaks Ability to draw manufacturers required vacuum and flow	As recommended by manufacturer	 Visual inspection Clean Replace parts Leak check
Flow Meters	Free mechanical movement	As recommended by manufacturer	 Visual inspection Clean Calibrate
Sampling Instruments	Absence of malfunction Proper response to zero span gas	As recommended by manufacturer	As recommended by manufacturer
Integrated Sampling Tanks	1. Absence of leaks	Depends on nature of use	Steam clean Leak check
Mobil Van Sampling System	1. Absence of leaks	Depends on nature of use	 Chang filters Change gas dryer Leak check Check for system contamination
Sampling lines	Sample degradation less than 2%	After each test series	Blow dry, inert gas through line until dry

TABLE 2
MAJOR SAMPLING EQUIPMENT CALIBRATION REQUIREMENTS

Sampling Equipment	Calibration Frequency	Calibration Procedure	Acceptable Calibration Criteria
Continuous Analyzers	Before and After Each Test Day	3-point calibration error test	< 2% of analyzer range
Continuous Analyzers	Before and After Each Test Run	2-point sample system bias check	< 5% of analyzer range
Continuous Analyzers	After Each Test Run	2-point analyzer drift determination	< 3% of analyzer range
CEMS System	Beginning of Each Day	leak check	< 1 in. Hg decrease in 5 min. at > 20 in. Hg
Continuous Analyzers	Semi-Annually	3-point linearity	< 1% of analyzer range
NO _x Analyzer	Daily	NO ₂ -> NO converter efficiency	> 90%
Differential Pressure Gauges (except for manometers)	Semi-Annually	Correction factor based on 5-point comparison to standard	+/- 5%
Differential Pressure Gauges (except for manometers)	Bi-Monthly	3-point comparison to standard, no correction factor	+/- 5%
Barometer	Semi-Annually	Adjusted to mercury-in- glass or National Weather Service Station	+/- 0.1 inches Hg
Dry Gas Meter	Semi-Annually	Calibration check at 4 flow rates using a NIST traceable standard	+/- 2%
Dry Gas Meter	Bi-Monthly	Calibration check at 2 flow rates using a NIST traceable standard	+/- 2% of semi-annual factor
Dry Gas Meter Orifice	Annually	4-point calibration for ΔH @	
Temperature Sensors	Semi-Annually	3-point calibration vs. NIST traceable standard	+/- 1.5%

Note: Calibration requirements will be used that meet applicable regulatory agency requirements.

September 6, 2019

Mr. John Peterson Montrose Air Quality Services, LLC 1631 E. Saint Andrew Place Santa Ana, CA 92705

Subject: LAP Approval Notice

Reference # 96LA1220

Dear Mr. Peterson:

We have reviewed your renewal letter under the South Coast Air Quality Management District's Laboratory Approval Program (LAP). We are pleased to inform you that your firm is approved for the period beginning September 30, 2019, and ending September 30, 2020 for the following methods, subject to the requirements in the LAP Conditions For Approval Agreement and conditions listed in the attachment to this letter:

Methods 1-4 Methods 5.1, 5.2, 5.3, 6.1

Methods 10.1 and 100.1 Methods 25.1 and 25.3 (Sampling)

USEPA CTM-030 and ASTM D6522-00 Rule 1121/1146.2 Protocol

Rule 1420/1420.1/1420.2 - (Lead) Source and Ambient Sampling

Your LAP approval to perform nitrogen oxide emissions compliance testing for Rule 1121/1146.2 Protocols includes satellite facilities located at:

McKenna Boiler Noritz America Corp. 1510 North Spring Street 11160 Grace Avenue

Los Angeles, CA 90012

11160 Grace Avenue 270 Fountain Valley, CA 92708 San

Ajax Boiler, Inc. 2701 S. Harbor Blvd. Santa Ana, CA 92704

Laundry Building of VA Greater Los Angeles Healthcare System 508 Constitution Avenue Los Angeles, CA 90049

Thank you for participating in the LAP. Your cooperation helps us to achieve the goal of the LAP: to maintain high standards of quality in the sampling and analysis of source emissions. You may direct any questions or information to LAP Coordinator, Glenn Kasai. He may be reached by telephone at (909) 396-2271, or via e-mail at gkasai@aqmd.gov.

Sincerely,

D. Sarker Dipankar Sarkar

Program Supervisor Source Test Engineering

DS:GK/gk Attachment

190906 LapRenewalRev.doc

American Association for Laboratory Accreditation

Accredited Air Emission Testing Body

A2LA has accredited

MONTROSE AIR QUALITY SERVICES

In recognition of the successful completion of the joint A2LA and Stack Testing Accreditation Council (STAC) evaluation process, this laboratory is accredited to perform testing activities in compliance with ASTM D7036:2004 - Standard Practice for Competence of Air Emission Testing Bodies.

President and CEO For the Accreditation Council Certificate Number 3925.01 Valid to February 29, 2020

Presented this 5th day of March 2018.

This accreditation program is not included under the A2LA ILAC Mutual Recognition Arrangement.

APPENDIX B SAMPLE LOCATION VERIFICATION DATA

STACK GAS STRATIFICATION AND ABSENCE OF FLOW DISTURBANCE TESTING AT COLMAC MECCA PROJECT

Prepared For:

UC Operating Service Mecca, California

For Submittal To:

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT Diamond Bar, California

Prepared By:

Edward J. Filadelfia

CARNOT Tustin, California

JULY 1994

CARNOT

1140985/R106E622.T

REVIEW AND CERTIFICATION

All work, calculations, and other activities and tasks performed and documented in this report were carried out under my direction and supervision.

_ Date_10/14/84

Edward J. Filadelfia Senior Engineer

I have reviewed, technically and editorially, details, calculations, results, conclusions and other appropriate written material contained herein, and hereby certify that the presented material is authentic and accurate.

Edward J. Filadelfia Senior Engineer Date

ii

TABLE OF CONTENTS

SECI	<u>ON</u>	<u> 401</u>
1.0	INTRODUCTION	1
2.0	UNIT DESCRIPTION	3
3.0	TEST DESCRIPTION 3.1 TEST CONDITIONS 3.2 SAMPLE LOCATION 3.3 TEST PROCEDURES 3.3.1 Gaseous Stratification	4 4 4
4.0	RESULTS 4.1 GASEOUS STRATIFICATION	7
APPE	DICES	
Α	MEASUREMENT PROCEDURES	A-1
В	QUALITY ASSURANCE B.1 Quality Assurance Program Summary B.2 ARB Certification/SCAQMD Letter B.3 Calibration Data	B-2 B-7
C ₁	DATA SHEETS C.1 Sample Locations C.2 CEM Data C.3 3D Flow Data	C-2 C-3
D	CALCULATIONS	D-I
Е	STRIP CHARTS	E-1

iii

SECTION 1.0

INTRODUCTION

Carnot was contracted by UC Operating Service (UCOS) to determine the suitability of the alternate sample location accessible from the stack inlet duct. Tests were conducted to determine the level of stack gas stratification and flow disturbance. The tests were performed at this location to satisfy the requirements of alternate sample location CFR 40 Appendix A Method 1. The tests were performed using the standard methods in Chapter X of the SCAQMD's Source Test Manual.

The flow disturbance and gaseous stratification tests were performed on June 27-28, 1994. The test program was coordinated by Greg Deedon of UCOS and Edward Filadelfia of Carnot. The Carnot test team consisted of Edward Filadelfia, Dave Wonderly, and Chris Hone. Unit operation was established and maintained by UCOS personnel.

The results of the tests are summarized in Tables 1-1 and 1-2. These results show that the sample location meets the requirements of the SCAQMD and EPA by demonstrating that the stack gas stratification is less than 10% and the average resultant flow angle is less than 20 degrees with a standard deviation of less than 10 degrees.

A description of the unit is presented in Section 2.0. Test procedures and locations are presented in Section 3.0. Test results are presented in Section 4.0. Tests procedure descriptions, field data sheets, calculations, and control room data are included in the Appendices.

J

CARNOT

1140985/R106E622.T Rev. (Oppler 14, 1994)

TABLE 1-1 SUMMARY OF GASEOUS STRATIFICATION COLMAC ENERGY PROJECT JULY 1994

Parameter	Unit 1 % Stratification	Unit 2 % Stratification	SCAQMD Limit %
O ₂ , %	0.4%	1.0%	≤10

TABLE 1-2 SUMMARY OF FLOW DISTURBANCE MEASUREMENTS COLMAC ENERGY PROJECT JULY 1994

Parameter	Unit 1 Measured	Unit 2 Measured	SCAQMD Limit, %	EPA Limit,
Average Resultant Angle, Degrees	5.6°	5.9°	≤20	≤20
Standard Deviation, Degrees	3.3°	4.0°	≤10	N/A

SECTION 2.0

UNIT DESCRIPTION

The Colmac Energy Plant consists of two 297 MMBtu/hour, circulating bed boilers, the combined units are designed to produce 47 MW of net electrical output. Each unit is equipped with the following pollution control systems:

- 1. An ammonia injection system for control of NO, emissions.
- 2. Cyclonic mixing of injected ammonia with flue gas to provide for a minimum amount of ammonia slip (emission).
- 3. A limestone injection system to limit emissions of SO₂.
- 4. A reverse air baghouse to restrict opacity and emissions of sulfates and particulate to very low levels.

3

CARNO

W002AS-789048-RT-1697

SECTION 3.0

TEST DESCRIPTION

3.1 TEST CONDITIONS

All tests were performed with the unit operating at full load. Tests were conducted while the unit was firing bio mass and operating under normal conditions. Unit operations were established by UCOS operators.

3.2 SAMPLE LOCATION

Measurements were made from Units 1 and 2 inlet ducts to the stack. A schematic of the Sample location is shown in Figure 3-1. Chapter X sampling consisted of 40 point traverse for stratification, and a 42 point traverse for flow disturbances.

3.3 TEST PROCEDURES

Tests were performed using methods from the SCAQMD's Source Test Manual. These methods are contained in Chapter X - Section 1 for disturbed flow and Section 13 for gaseous stratification. Table 3-1 presents the test methods used in this program. O₂ concentrations were measured using Carnot's mobile emission monitoring system. Flow angles were measured using a United Sensor 3D probe. A description of the Carnot's Continuous Emissions Monitoring System and the standard measurement procedures are presented in Appendix A. A summary of the procedures used for gaseous stratification and disturbed flow are presented below.

3.3.1 Gaseous Stratification

Chapter X (Non-Standard Methods and Techniques), Chapter 13 of the SCAQMD Source Test Manual defines gaseous stratification as the presence of a difference, in excess of 10 percent, between any two points in the same cross sectional plane. Stratification can be determined for either pollutant gases (e.g., NO_x) or diluent gases (e.g., O_2 , CO_2) in units of concentration. For this test program, the O_2 concentration was used to measure the level of stack gas stratification.

4

CARNOT

1140985/R106E622 T Rev. (October 14, 1994)

TEST DESCRIPTION

Figure 3-1. UCOS - Duct Sample Locations

Due to variations in process O_2 concentrations, two O_2 analyzers were used. The first O_2 analyzer was used as a reference point and located at the center of the duct. The second was located at 40 traverse points during the test. Gases were monitored for three minutes at each traverse point.

TABLE 3-1 TEST PROCEDURES COLMAC ENERGY PROJECT JULY 1994

Parameter	Units	Measurement Principle	Reference Method	Comments
O ₂	%	Electrochemical Call	EPA 3A	40 point traverse for gaseous stratification according to Chapter X, Section 13
Flow Angle	Degrees	3D probe for pitch and yaw	1.1	42 point traverse for disturbed flow according to Chapter X, Section 1

SECTION 4.0

RESULTS

4.1 GASEOUS STRATIFICATION

The results of the gaseous stratification tests are summarized in Table 4-1. The results show that the O_2 concentration stratification levels for both sample locations were below the limit of 10%.

TABLE 4-1 GASEOUS STRATIFICATION COLMAC ENERGY PROJECT JULY 1994

Parameter	Percent Stratification
Unit 1 O ₂ , %	0.4%
Unit 2 O ₂ , %	1.0%

4.2 FLOW DISTURBANCE

The results of the flow disturbance measurements made with the 3-dimensional velocity probe are presented in Table 4-2. The results of these tests show that the average resultant flow angle was below the limit of 20 degrees with a standard deviation of less than 10 degrees for both sample locations.

TABLE 4-2 FLOW DISTURBANCE RESULTS COLMAC ENERGY PROJECT JULY 1994

Parameter	Unit 1 3D Probe	Unit 2 3D Probe
Avg. Yaw Angle, degrees	2.0	4.4
Avg. Pitch Angle, degrees	-0.4	-1.0
Avg. Resultant Angle, degrees	5.6	5.9
Standard Deviation, degrees	3.3	4.0

7

CARNOT

1140985/R106E622.T Rev. (October 14, 1994)

APPENDIX A MEASUREMENT PROCEDURES

Continuous Emissions Monitoring System
Oxygen (O2) by Continuous Analyzer
Three-Dimensional Velocity Testing

Continuous Emissions Monitoring System

 O_2 , CO_2 , NO_3 and SO_2 are measured using an extractive continuous emissions monitoring (CEM) package, shown in the following figure. This package is comprised of three basic subsystems. They are: (1) the sample acquisition and conditioning system, (2) the calibration gas system, and (3) the analyzers themselves. This section presents a description of the sampling and calibration systems. Descriptions of the analyzers used in this program and the corresponding reference test methods follow. Information regarding quality assurance information on the system, including calibration routines and system performance data follows.

The sample acquisition and conditioning system contains components to extract a representative sample from the stack or flue, transport the sample to the analyzers, and remove moisture and particulate material from the sample. In addition to performing the tasks above, the system must preserve the measured species and deliver the sample for analysis intact. The sample acquisition system extracts the sample through a stainless steel probe. The probe is insulated or heated as necessary to avoid condensation. If the particulate loading in the stack is high, a sintered stainless steel filter is used on the end of the probe.

Where water soluble NO_2 and/or SO_2 are to be measured, the sample is drawn from the probe through a heated teflon sample line into an on-stack cooled (approximately 35-40°F) water removal trap. The trap consists of stainless steel flasks in a bath of ice and water. This design removes the water vapor by condensation. The contact between the sample and liquid water is minimized and the soluble NO_2 and SO_2 are conserved. This system meets the requirements of EPA Method 20. The sample is then drawn through a teflon transport line, particulate filter, secondary water removal and into the sample pump. The pump is a dual head, diaphragm pump. All sample-wetted components of the pump are stainless steel or teflon. The pressurized sample leaving the pump flows through a third condensate trap in a refrigerated water bath (≈ 38 °F) for final moisture removal. A drain line and valve are provided to constantly expel any condensed moisture from the dryer at this point. After the dryer, the sample is directed into a distribution manifold. Excess sample is vented through a back-pressure regulator, maintaining a constant pressure of 5-6 psig to the analyzer rotameters.

The calibration system is comprised of two parts: the analyzer calibration, and the system bias check (dynamic calibration). The analyzer calibration equipment includes pressurized cylinders of certified span gas. The gases used are, as a minimum, certified to 1% by the manufacturer. Where necessary to comply with reference method requirements EPA Protocol I gases are used. The cylinders are equipped with pressure regulators which supply the calibration gas to the analyzers at the same pressure and flow rate as the sample. The selection of zero, span, or sample gas directed to each analyzer is accomplished by operation of the sample/calibration selector fittings.

The system bias check is accomplished by transporting the same gases used to zero and span the analyzers to the sample system as close as practical to the probe inlet. This is done either by attaching the calibration gas supply line to the probe top with flexible tubing or by actuation of a solenoid valve located at the sample conditioner inlet (probe exit). The span gas is exposed to the same elements as the sample and the system response is documented. The analyzer indications for the system calibration check must agree within 5% of the analyzer calibration. Values are adjusted and changes/repairs are made to the system to compensate for any difference in analyzer readings. Specific information on the analytical equipment and test methods used is provided in the following pages.

Schematic of CEM System

UOP7B-11409/R106E622 T

A-3

Method:

Oxygen (O2) by Continuous Analyzer

Applicable Reference

Methods:

EPA 3A, EPA 20, ARB 100, BA ST-14, SCAQMD 100.1

Principle:

A sample is continuously drawn from the flue gas stream, conditioned, and conveyed to the instrument for direct readout of O_2 concentration.

Analyzer:

Teledyne Model 326A

Measurement Principle:

Electrochemical cell

Ranges:

0-5, 0-10, 0-25 % O₂

Accuracy:

1% of full scale

Output:

0-100 mV, linear

Interferences:

Halogens and halogenated compounds will cause a positive interference. Acid gases will consume the fuel cell and cause a slow calibration drift.

Response Time:

90% <7 seconds

Sampling Procedure:

A representative flue gas sample is collected and conditioned using the CEM system described previously. If Method 20 is used, that method's specific procedures for selecting sample points are used. Otherwise, stratification checks are performed at the start of a test program to select single or multiple-point sample locations.

Analytical Procedure:

An electrochemical ceil is used to measure O_2 concentration. Oxygen in the flue gas diffuses through a Teflon membrane and is reduced on the surface of the cathode. A corresponding oxidation occurs at the anode internally, and an electric current is produced that is proportional to the concentration of oxygen. This current is measured and conditioned by the instrument's electronic circuitry to give an output in percent O_2 by volume.

Special Calibration Procedure:

The measurement cells used with the O_2 instrument have to be replaced on a regular basis. After extended use, the cell tend to produce a nonlinear response. Therefore, a three-point calibration is performed at the start of each test day to check for linearity. If the response is not linear (\pm 2% of scale), the cell is replaced.

Method:

Three-Dimensional Velocity Testing

Applicable Ref. Method:

EPA Method 1, ANSI ASME PTC 11 - 1984

Applicability of Method:

When a sample location to be used for velocity or particulate tests does not meet the traditional Method 1 criteria of being at least two duct diameters downstream and one-half diameter upstream of any flow disturbance, this alternate method is used to evaluate the suitability of the location

A three-dimensional velocity probe is used to measure pitch and yaw angle at a minimum of 40 traverse points for round ducts and 42 points for rectangular ducts. If the average resultant angle is less than 20° and the standard deviation is less than 10°, the sample location is deemed acceptable. Velocity and particulate traverses are then performed at the same traverse points using standard Method 2 and 5 equipment and procedures.

Principle:

The instrument measures yaw and pitch angles of fluid flow, as well as total and static pressures.

Analyzer:

United Sensor Three-Dimensional Directional Probe

Sampling Procedure:

Each probe has five measuring holes in its tip. A centrally located pressure hole measures pressure P1, while two lateral pressure holes measure pressures P2 and P3. If the probe is rotated manually until P2 and P3 are identical as a readout on the manometer, the yaw angle of flow is then indicated by the number of degrees rotated.

When the yaw angle has been determined, an additional differential pressure P4 - P5 is measured by pressure holes located above and below the total pressure (P1) hole. Pitch angle is determined by calculating (P4 - P5)/(P1 - P2) and using the calibration data for the individual probe and interpolating between the bracketing data. At any particular pitch angle, the velocity pressure coefficient (Pt - Ps)/(P1 -P2) can also be interpolated from the calibration data and Pt - Ps and Ps calculated.

Note that this probe also allows for very accurate gas flow measurements, in addition to the EPA Method I procedures that allow it to be used for determination of flow angle.

Definitions:

P₁ = Total Pressure P₂ = Static Pressure P₃ = Static Pressure P₄ = Pitch Pressure P₅ = Pitch Pressure

 $P_1 - P_2 = \text{Velocity Head Pressure}$ $\frac{P_4}{P_1} - \frac{P_5}{P_2} = \text{Pitch angle calculated on calibration curve}$

Calculations:

Velocity (fps) in direction of flow

$$V_s = 2.90 \ C_P \sqrt{\Delta P \ T_s} \sqrt{\left(\frac{29.92}{P_S}\right) \left(\frac{28.95}{MW_{wet}}\right)}$$

where:

C_P = Pitot Calibration factor

 $\Delta P = \text{Average velocity, head, iwg } (\sqrt{\Delta P})^2$

T_s = Stack Temperature, °R P_s = Stack Pressure (iwg)

MWwe = Molecular weight, wet

Resultant angle:

$$R = \frac{\cos^{-1}(\cos\phi_{Y,R}\cos\phi_{P,R})}{0.0175}$$

where:

 $\phi_{Y,R} = Yaw$ Angle in Radians $\phi_{P,R} = Pitch$ Angle in Radians R = Resultant Angle in Degrees

Pitch Angle Curve Fit Equation (Degrees)

$$\Phi_P = A_1 \left(\frac{P_4 - P_5}{P_1 - P_2} \right) + A_2 \left(\frac{P_4 - P_5}{P_1 - P_2} \right)^2 - A_3 \left(\frac{P_4 - P_5}{P_1 - P_2} \right)^3 - A_4 \left(\frac{P_4 - P_5}{P_1 - P_2} \right)^4 + A_5 \left(\frac{P_4 - P_3}{P_1 - P_2} \right)^5 + A_6 \left(\frac{P_4 - P_5}{P_1 - P_2} \right)^6 + A_6 \left(\frac{P_4 - P_5}{P_1 -$$

Pitot coefficient curve fit equation (used to calculate corrected axial velocities)

$$\frac{P_1 - P_5}{P_1 - P_2} = B_1 + B_2 \phi_P + B_3 + \phi_P + B_4 \phi_P^3 + B_5 \phi_P^4 + B_6 \phi_P^5 + B_7 \phi_P^6$$

CARNOT

A-6

Figure Five Hole Probe

UOP7B-11409/R106E622.T

A-7

3-DIMENSIONAL VELOCITY PROBE CALIBRATION FACTORS

Probe	B-2455
A_1	63.09
A_2	23.69
A_3	24.505
A ₄	33.312
A ₅	7.5203
A_{\diamond}	11.669
B_{I}	0.997
B_{2}	7 x 10 ⁻³
B_3	3 x 10 ⁻⁵
B_{A}	8 x 10 ⁻⁷
B_{ς}	1 x 10 ⁻⁹
B_6	3×10^{-10}
\mathbb{B}_7	3×10^{-2}

APPENDIX B
QUALITY ASSURANCE

Appendix B.1

Quality Assurance Program Summary

QUALITY ASSURANCE PROGRAM SUMMARY AND ARB CERTIFICATION

Carnot ensures the quality and validity of its emission measurement and reporting procedures through a rigorous quality assurance (QA) program. The program is developed and administered by an internal QA Officer and encompasses seven major areas:

- 1. Development and use of an internal QA manual.
- 2. QA reviews of reports, laboratory work, and field testing.
- 3. Equipment calibration and maintenance.
- 4. Chain of custody.
- 5. Training.
- 6. Knowledge of current test methods.
- Agency certification.

Each of these areas is discussed individually below.

Quality Assurance Manual. Carnot has prepared a QA Manual according to EPA guidelines. The manual serves to document and formalize all of Carnot's QA efforts. The manual is constantly updated, and each member of the Source Test Division is required to read and understand its contents. The manual includes details on the other six QA areas discussed below.

QA Reviews. Carnot's review procedure includes review of each source test report by the QA Officer, and spot check reviews of laboratory and field work.

The most important review is the one that takes place before a test program begins. The QA Officer works closely with Source Test Division personnel to prepare and review test protocols. Test protocol review includes selection of appropriate test procedures, evaluation of any interferences or other restrictions that might preclude use of standard test procedures, and evaluation and/or development of alternate procedures.

Equipment Calibration and Maintenance. The equipment used to conduct the emissions measurements is maintained according to the manufacturer's instructions to ensure proper operation. In addition to the maintenance program, calibrations are carried out on each measurement device according to the schedule outlined by the California Air Resources Board (CARB). The schedule for maintenance and calibrations are given in Tables B-1 and B-2. Quality control checks are also conducted in the field for each test program. The following is a partial list of checks made as part of each CEM system test series.

- Sample acquisition and conditioning system leak check.
- 2-point analyzer calibrations (all analyzers)
- 3-point analyzer calibrations (analyzers with potential for linearity errors).
- Complete system calibration check ("dynamic calibration" through entire sample system).

- Periodic analyzer calibration checks (once per hour) are conducted at the start and end of each test run. Any change between pre- and post-test readings are recorded.
- All calibrations are conducted using gases certified by the manufacturer to be + 1% of label value (NBS traceable).

Calibration and CEM performance data are fully documented, and are included in each source test report.

<u>Chain of Custody</u>. Carnot maintains full chain of custody documentation on all samples and data sheets. In addition to normal documentation of changes between field sample custodians, laboratory personnel, and field test personnel, Carnot documents every individual who handles any test component in the field (e.g., probe wash, impinger loading and recovery, filter loading and recovery, etc.).

Samples are stored in a locked area to which only Source Test Division personnel have access. Neither other Carnot employees nor cleaning crews have keys to this area.

Data sheets are copied immediately upon return from the field, and this first generation copy is placed in locked storage. Any notes made on original sheets are initialed and dated.

<u>Training</u>. Personnel training is essential to ensure quality testing. Carnot has formal and informal training programs which include:

- 1. Attendance at EPA-sponsored training courses.
- Enrollment in EPA correspondence courses.
- 3. A requirement for all technicians to read and understand Carnot's QA Manual.
- 4. In-house training and QA meetings on a regular basis.
- 5. Maintenance of training records.

Knowledge of Current Test Methods. With the constant updating of standard test methods and the wide variety of emerging test methods, it is essential that any qualified source tester keep abreast of new developments. Carnot subscribes to services which provide updates on EPA and CARB reference methods, and on EPA, CARB and SCAQMD rules and regulations. Additionally, source test personnel regularly attend and present papers at testing and emission-related seminars and conferences. Carnot personnel maintain membership in the Air and Waste Management Association, the Source Evaluation Society, and the ASME Environmental Control Division.

AGENCY CERTIFICATION

Carnot is certified by the CARB as an independent source test contractor for gaseous and particulate measurements. Carnot is certified by the SCAQMD as an independent source test contractor for gaseous and particulate measurements using SCAQMD Methods 1, 2, 3, 4, 5, 6, 7 and 100.1. Carnot also participates in EPA QA audit programs for Methods 5, 6 and 7.

TABLE B-I
SAMPLING INSTRUMENTS AND EQUIPMENT CALIBRATION SCHEDULE
As Specified by the CARB

Instrument Type	Frequency of Calibration	Standard of Comparison or Method of Calibration	Acceptance Limits
Orifice Meter (large)	12 months	Calibrated dry test meter	± 2% of volume measured
Dry Gas Meter	12 months or when repaired	Calibrated dry test meter	\pm 2% of volume measured
S-Type Pitot (for use with EPA-type sampling train	6 months	EPA Method 2	Cp constant (+5%) over working range; difference between average Cp for each leg must be less than 2%
Vacuum Gauges Pressure Gauges	6 months	Manometer	± 3 %
ield Barometer	6 months	Mercury barometer	± 0.2" Hg
Temperature Measurement	6 months	NBS mercury thermometer or NBS calibrated platinum RTD	± 4°F for <400°F ± 1.5% for >400°F
Temperature Readout Devices	6 months	Precision potentiometer	± 2% full scale reading
Analytical Balance	12 months (check prior to each use)	Should be performed by manufacturer or qualified laboratory	± 0.3 mg of stated weight
Probe Nozzles	12 Months	Nozzle diameter check micrometer	Range < ± 0.10 mm for three measurements
Continuous Analyzers	Depends upon use, frequency and performance	As specified by manufacturers operating manuals, EPA NBS gases and/or reference methods	Satisfy all limits specified in operating specifications

TABLE B-2 EQUIPMENT MAINTENANCE SCHEDULE Based on Manufacturer's Specifications and Carnot Experience

Equipment	Performance Requirement	Maintenance Interval	Corrective Action
Pumps	 Absence of leaks Ability to draw manufacturer required vacuum and flow 	Every 500 hours of operation or 6 months, whichever is less	 Visual inspection Clean Replace worn parts Leak check
Flow Measuring Device	 Free mechanical movement Absence of malfunction 	Every 500 hours of operation or 6 months, whichever is less After each test, if used in H ₂ S sampling or other corrosive atmospheres	 Visual inspection Clean Calibrate
Sampling Instruments	 Absence of malfunction Proper response to zero, span gas 	As required by the manufacturer	As recommended by manufacturer
Integrated Sampling Tanks	Absence of leaks	Depends on nature of use	 Steam clean Leak check
Mobile Van Sampling Systems	Absence of leaks	Depends on nature of use	 Change filters Change gas dryer Leak check Check for system contamination
Sampling Lines	Sample degradation less than 2%	After each test or test series	Blow filtered air through line until dry

Appendix B.2

ARB Certification

State of California AIR RESOURCES BOARD

Executive Order G-94-028

Approval to Carnot
To Conduct Testing as an Independent Contractor

WHEREAS, the Air Resources Board (ARB), pursuant to Section 41512 of the California Health and Safety Code, has established the procedures contained in Section 91200-91220, Title 17, California Code of Regulations, to allow the use of independent testers for compliance tests required by the ARB; and

WHEREAS, pursuant to Sections 91200-91220, Title 17, California Code of Regulations, the Executive Officer has determined that Carnot meets the requirements of the ARB for conducting ARB Test Methods 1, 2, 3, 4, 5, 6, 8, 10, and 100 (NOx, O2) when the following conditions are met:

1. Carnot conducts ARB Test Method 100 for 02 using a Teledyne 326 analyzer with either a A5 or a B1 sensor, or a paramagnetic analyzer.

NOW, THEREFORE, BE IT ORDERED that Carnot is granted an approval, from the date of execution of this order, until June 30, 1995 to conduct the tests listed above, subject to compliance with Section 91200-91220, Title 17, California Code of Regulations.

BE IT FURTHER ORDERED that during the approved period the Executive Officer or his or her authorized representative may field audit one or more tests conducted pursuant to this order for each type of testing listed above.

Executed this 29 day of California.

5 M/2

_ 1994, at Sacramento,

James J. Morgester, Chief Compliance Division

PETE WILSON, Governor

AIR RESOURCES BOARD 2020 L STREET P D. BOX 2815 SACRAMENTO, CA 95812 JUL 13 1994 CARNOT

July 8, 1994

Mr. Michael L. Schmitt Carnot 15991 Red Hill Avenue, Suite 110 Tustin, California 92680

Dear Mr. Schmitt:

Testing Approval

We are pleased to inform you that we have renewed your approval to conduct the types of testing listed in the enclosed Executive Order. This approval is valid until June 30, 1995 during which time a field audit of your company's testing ability may be conducted. We have also enclosed a certificate of approval.

Should you have any questions or need further assistance, please contact Ms. Kathryn Gugeler at (916) 327-1521 or Mr. David Tribble at (916) 323-2217. All correspondence should be addressed to me at the post office box above.

Sincerely,

James J. Morgester, Chief Compliance Division

Enclosures

cc: Mr. Ed Jeung

Department of Health Services

Air and Industrial Hygiene Laboratory

2151 Berkeley Way

Berkeley, California 94704

Appendix B.3

Calibration Data

CARNOT SPAN GAS RECORD

CLIENT/LOCATION: _	UCOS -COlmac	DATE:	6127144
		BY:	Cit

	SPANCY	LINDER	AUX. SPAN CYLINDER		
GAS	CYLINDER NO.	CONCENTRATION	CYLINDER NO.	CONCENTRATION	
ZERO		99.999 %		:	
NOx	AAL3583.	89.54	AAC 1240 0	47.51	
O ₂	Acr.045927	6.937	ALMOS 739	12.45	
co .· · .		`.			
CO ₂	ALM 015927	22.43	AL405739	15.16	
so,	1.				

CARNOT INSTRUMENT LINEARITY

			ANALYZER		
	0,	co,	co	NOx	so,
ANALYZER RANGE	0-25		-	0-100	_
SET TO HIGH STD (80-90% OF RANGE)	20.9			88.5	_
ACTUAL VALUE OF LOW STD	12.45		-	97.51	-
AS-FOUND LOW STD (50-60% OF RANGE)	12.33		_	48.9	
DIFFERENCE IN % OF FULL SCALE	0.5	_	_	+1.3	

% ERROR CALCULATION:

(AS FOUND - ACTUAL VALUE OF SPAN) x 100

ALLOWABLE DEVIATION IS 2% OF FULL SCALE (2 SOUARES ON STRIP CHART).

PMF-009

CARNOT SPAN GAS RECORD

CLIENTAOCATION:	0005	Colmac	DATE:	6-28-94	
				D.U.	

040	SPANCYL	INDER	AUX. SPAN CYLINDER		
GAS	CYLINDER NO.	CONCENTRATION	CYLINDER NO.	CONCENTRATION	
ZERO					
NOx	AAL3583	88.54	A AL12400	47.51	
0,	ALM - 045927	8.937	ALM5-739	12.45	
co					
co,					
so,					

CARNOT INSTRUMENT LINEARITY

		ANALYZER				
	· · · o,	co,	co	NOx	so,	
ANALYZER RANGE	0-25			0-100		
SET TO HIGH STD (80-90% OF RANGE)	20.74	***		88.5		
ACTUAL VALUE OF LOW STD	12.45			47.51		
AS-FOUND LOW STD (50-60% OF RANGE)	12.55			47.00		
DIFFERENCE IN % OF FULL SCALE	.5%			. 5%		

% ERROR CALCULATION:

(AS FOUND · ACTUAL VALUE OF SPAN)

RANGE

x

x 100

ALLOWABLE DEVIATION IS 2% OF FULL SCALE (2 SOUARES ON STRIP CHART).

PMF-0-09

1

CARNOT CEM PERFORMANCE DATA

CLIENTLOCATION: UCGS-Colney	DATE: 6/28/91
	BY: 5

SYSTEM CONFIGURATION F-600							
ANALYZERS IN SE	AVICE						
ANALYZERS:	0,			೧೦ೢ	co	NOx	
MODEL:	Takdym	(PIR	2000	48	105	
SERIAL NO.:				1:			
PROBE	MAIN	14	K	SAMPLE CONDITIONER			
LENGTH:	6'	4	/	CONDENS	ER-VACUUM SIDE (CH	ECK FLOW):	
LINER MATERIAL:	55	54	,	CONDENSE	ER-PRESSURE SIDE (CHECK FLOW):	
HEATED PROBE (Y	(N): ~U	~	U	CONDENSE	ER TEMPERATURE:	40	
HEATED LINE (Y/N): Yes Yes			9	FILTER CONDITION (COND. OR DATE LAST CHANGED): 50 4/94			
SAMPLE LINE				Syst em Le	eak check map	ИX	
LENGTH:	50'	50)′	PRE-TEST	(cfh): O. O	0.0	
LINER MATERIAL:	tflow	tefl	0-	POST-TEST (dh);			
SYSTEM BIAS LINE: tefor before			با د	LEAK RATE (%) = POST-TEST (cfh) SYSTEM FLOW RATE (cfm) x 60 x 100 = %			
ON-STACK CONDIT	TIONER			NOX CONVI	e rsion efficiency		
IN SERVICE (Y/N):	yes			HIGH CAL NOx			
KNOCK-OUT COND	ITION (CHECK F	LOW);		HIGH CAL NO (AS FOUND) /			
COOLANT: TO	-			LOW CAL NOX			
				LOW CAL NO (AS FOUND) /			
	Ó	PERA	ting c	ONDITIONS	5		
SAMPLE PRESSURE	SAMPLE PRESSURE:			SYSTEM RESPONSE TIME CHECK			
SAMPLE VACUUM:				UPSCALE:sec.			
NOx VACUUM:				DOWNSCA	ALĖ:	sec.	

PMF-011

Scott Specialty Gases, Inc.

2600 CAJON BOULEVARD, SAN BERNARDINO, CA 92411

(909) 827-2571 FAX: (909) 837-0549

CERTIFICATE OF ANALYSIS: EPA PROTOCOL GAS

Customer CARNOT RICK MADRIGAL 15991 RED IULL AVE TUSTIN, CA 92680

Assay Laboratory Scott Specialty Gases 2600 Cajon Doulevard San Bernardino, CA 92411

Purchase Order Project #

1818 30380 003

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay and Certification of Gaseous Calibration Standards: Procedure G1; September 1993.

Cylinder Number Cylinder Pressure+ ALM045739 Certification Date 2000 PSIG

03-15-94

Exp. Date

03-15-97

Components (CARBON DIOXIDE)

ANALYZED CYLINDER

Certified Concentration 15.16 %

Analytical Uncertainty

± 1 % NIST Traceable

(OXYGEN)

(Nitrogen)

Balance Gas

12.45 %

REFERENCE STANDARD

Cylinder Number Concentration Expiration Date Type/Sample No. 18.97 % CO2 IN N2 A018082 **GMIS** 06 - 9412.45 % O2 IN N2 06-94 A6513 **GMIS**

INSTRUMENTATION

Instrument/Model/Scrial # CO2:Horiba / OPE-135C / 56553902

O2:Horiba / OPE-335 / 850557042

Last Date Calibrated

02-22-94 02-25-94 Analytical Principle

NDIR

Magnetopneumatic

ANALYZER READINGS (Z=Zero Gas R=Reference Gas T=Test Gas r=Correlation Coefficient)

Calibration Curve Second Triad Analysis Components First Triad Analysis Date: 03-15-94 Response Units: my Response Units my Concentration= Certion Dissoide A =0.000007986 R1= 97.0 TI= 85.9 71= RIS Π≂ Z1 = 0.00 R?= 72= T7= B =0 0002062 77= 85.8 R2- 97.0 **∑=** 0.00 Z3= T3= C =0.1000 Z3= 0.00 T3= 84 8 R3= 970 Avg. Cons. of Cvst Cvt. D v=0.0001333 15.16 % Avg. Conc of Cutt Offi Response Units: my Concentration= Oxygen A =0.2500 ⁄⊒≖ RI = Π= B~000586 R2= 72-77-

Date: 03-15-54	Кеъровя	e Unite my
Z1 ≠ 0.00	R1= 94 1	T1= 49.8
R2= 94.1	23= 0.00	71= 49.8
Z3= 000	T3= 40.8	R3= 94.1
Avg. Conc of C	und Cyl.	12.45 %

R1=

22=

13=

Avg. Conc. of Curt Cyt.

Response U

nHu:tnV	
T1 =	
T7=	
R3=	

73*	13-	RJ=
AVE CONL	ol Creat Ci-t	
Date:	Respo	ine Units:mov
Z1 =	RI =	∏≈
R2=	72 ×	T2=

جدR

13-

	-	
Concentration=		
•		
	`	

Ax + B

 $C+x^3+Bx^4+Cx+D$

Special Notes:

76-WJ

73-

214 of 265

Date

Z1 = R2=

⁺Do not see when cylinder present it helem 150 peig.

Acalytical insecrations is inclusive of usual linears source which at least includes reference standard error & precision of the measurement processes.

Scott Specialty Gases, Inc.

2600 CAJON BOULEVARD, SAN BERNARDINO, CA 92411

(909) 887-2571 FAX: (909) 887-0549

CERTIFICATE OF ANALYSIS: EPA PROTOCOL GAS

Customer CARNOT RICK MADRIGAL 1599) RED HILL AVE SUITE 110 TUSTIN, CA 92680

Assey Laboratory Scott Specialty Gases 2600 Cajon Boulevard San Bernardino, CA 92411

Purchase Order 1914 Project #

30667 (109

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay and Certification of Gaseous Calibration Standards, Procedure G1; September 1993.

Cylinder Number Cylinder Pressure+ ALM045927 1900 PSIG Certification Date

03-30-94

Exp. Date

03-30-97

ANALYZED CYLINDER

Components (CARBON DIOXIDE) (OXYGEN)

Certified Concentration

22.43 % 8.937 %

Analytical Uncertainty*

±1 % NIST Traceable

(Nitrogen)

Balance Gas

REFERENCE STANDARD

Cylinder Number Type/Sample No. Expiration Date ALM001136 CRM1675 06 - 94**GMIS** 06-94 A10868

Concentration 14.08 % CO2/N2 9_520 % O2/NZ

INSTRUMENTATION

Instrument/Model/Serial # CO2:PIR2000-ACUBLEND

Last Date Calibrated 03-24-94

Analytical Principle NDIR

O2:Horiba / OFE-335 / 850557042

03-30-94

Magnetopneumatic

ANALYZER READINGS (Z=Zero Gas R=Reference Gas T=Test Gas r=Correlation Coefficient)

First Triad Analysis Composents Carbon Dioxide Deda: 03-3-0-94 Response Units: mv T1- 92.2 2.1 = 0.00RI= 72.9 Z1= 0.00 TI= 92.2 R2 = 72.923- 0.60 T3 = 92.2 R3- 729 Avg. Cook of Cost Cyl. ZZ 43 %

Date:	Respe	Response Galla: nev					
Z1-	R1~	Π~					
Z1= R2= Z3=	Z2=	72=					
23-	T3==	R3≈					
AME CODE	of Cost Cyl						

Second Triad Analysis

Concentrations	Ax4+Bx3+Cx2+DX
	+E,
A =0.00000001942	
B ==0.000001975	
C =0.001\$82	
D=0.08535	
E =0 002942	

Calibration Curve

೦ಸುತ್ತಡ

	Deta: 03-30-94		F	Response Units: в		DIV
	21=	0.00 95.3 0.00 Cenc. ef C	R1=	95.3	T1 =	89.4
	R2=	95.3	72≂	0.00	172≃	894
1	Z3=	0.00	T3=	89.3	₽ 3≈	95.3
	Arg	Conc. of C	1	8.937 9	И	

Dwte: ZI=	Respo	Response Units: my		
ZI =	R1=	T1=		
R2= T3=	22=	77=		
73=	1.7∞	R3≃		
Avg. Coop. of Cook Cyl.				

Concentration	Ax + Fi	-	
A =0 09999		*	
B =0.0004275			

Duie:	Веорогое Unitarity		
Date: Z1= R2= Z3=	R1 =	T1=	
R2-	Z⊇ 	T2=	
23=	13≃	R3=	

Dete:	R⇔ропы Сальсту	
Z1=	R1∞	T1=
R1=	Z2-	12-
7.3-4	73≂	RJ~

Concentration

⁺Do sex use when cylinder pressure is below 150 poig.

^{*}Analytical uncertainty is inclusive of amad known error sources which at least includes reference mandard error & precession of the measurement processes

CARNOT 3-DIMENSIONAL VELOCITY PROBE CALIBRATION PITCH ANGLE vs. F1 PROBE ID: B-2455

Plich Angle = $63.09X + 23.69X^2 - 24.505X^3 - 33.312X^4 + 7.5203X^5 + 11.669X^8$

Performed Dy: MIN/RM
Thate: 5/13/94

CARNOT 3-DIMENSIONAL VELOCITY PROBE CALIBRATION F2 vs. PITCH ANGLE PROBE ID: B-2455

 $F2^{\frac{1}{2}} \stackrel{\bullet}{0.997} + 0.0007X + 3E-5X^2 + 8E-7X^3 + 1F-9X^4 - 3F-10X^5 + 3F-12X^5$

Performed By: IMM/RIM Date: 5/18/94 APPENDIX C
DATA SHEETS

UOP7B-)1409/R106E622.T

C-1

Appendix C.1
Sample Locations

CARNOT SAMPLING POINT LOCATION DATA - EPA METHOD 1

PLANT:	ves - whice	DATA BY: EE
	6(27/94	

TEST LOCATION: Unit 2 Duct

SAMPLE

POINT

UPSTREAM DIST./DIA.: 17/
DOWNSTREAM DIST./DIA.: 3/
COUPLING LENGTH: 8=

NO. OF SAMPLING PTS.: 47

STACK DIMENSION: 47 × 119=

STACK AREA, FT: 38.8

1	3.4	11.42
2	10.3	19.3
3	17,14	25.14
4	24.	74
5	30.81	38, 85
6	27.)	45.71
7	185	54,57
		٠

IN, FROM

NEAR WALL

IN. FROM

NOZZLE*

% OF

DIAMETER

'INCHES FROM WALL PLUS COUPLING LENGTH

PMF-002

Appendix C.2 CEM Data

0

CARNOT CONTINUOUS EMISSIONS MEASUREMENTS

CLIENT: UCUT - Column	AMBIENT TEMP., DB/WB: ~115					
DATE: 6/28/99	BAROMETRIC PRESSURE: 29.80					
OPERATOR:	DUCT STATIC PRESSURE:					
TESTLOCATION: UN 1+1 Out let	FUEL: BO Mos					
TEST MUNDEDS: 1-1- GTow						

TEST	SAMPLE	SAMPLE POINT/	Accorded DRY, UNCORRECTED								CORRECTED TO%, DRY			
NO.	TIME	CONDITION	0,	D ₂	co	NOx	NO	NO,	SO,	co	NOx	SO,		
		Dur	13/	1/2				-						
1-1	199221	AS	6,9	6.9										
	1224	LA4	7,2	7.1										
	1227	A3 .	6.7	6.7										
	1227	A2	7,0	7, 2										
	1230	·Al	7,1	8,0										
	1236	B5	6.5	65										
V	1235	B4	67	6.7										
	1292	133	6,7	6.6										
	1245	02	6.3	6.2										
	1248	BI	65	6.5										
OMMENT	S:						'			,				

PMF-013

CARNOT CONTINUOUS EMISSIONS MEASUREMENTS

	Fa.	
1		_
L	-	

CLIENT: UCO5-COlmun	AMBIENT TEMP., DB/WB:
DATE: 6/28/94	BAROMETRIC PRESSURE:
OPERATOR: EA	DUCT STATIC PRESSURE:
TEST LOCATION: UNIT!	FUEL: Sw Mas
1 (7 -	

TEST	SAMPLE	SAMPLE POINT/ CONDITION	REFEDRY, UNCORRECTED								CORRECTED TO%, DRY		
NO.	TIME		02	Ю2	co	NOx	NO I	NO ₂	SO ₂	СО	ИОх	so,	
	1254	55	6.6	45				-					
	1357	CA	6.3	62									
	1303	C3	614	6,4	-								
,	1306	C2-	69	6.8									
77	1306	CI	6,7	6.7									
12, 800	1312	- P5	(,7	6,6									
V-	13/5	04	6,9	6.8									
	13/4	D3	6.7	4.7									
	1321	02	6.6	6.60									
	1327	0/	6,7	6.7									
		:										ye "	
COMMENT	s:				**********	1							

PMF-013

3)

CARNOT CONTINUOUS EMISSIONS MEASUREMENTS

CLIENT: UKUS-(Olyac	AMBIENT TEMP., DB/WB;
DATE: 6/28/94	BAROMETRIC PRESSURE:
OPERATOR: 59	DUCT STATIC PRESSURE:
TEST LOCATION: Unit 2 Outlet	FUEL:
TEST NUMBERS: 1-1- Struct	

TEST	SAMPLE SAMPLE POINT/		Peb- DRY, UNCORRECTED								CORRECTED TO DRY			
NO.	TIME	CONDITION	0,	1. O ₂	СО	NOx	NO	NO,	SO ₂	CO	NOx	SO,		
1-1	1330	E-5	7,0	6,9			-		1-2	x - 2				
	1330	E-4	66	6.6							ر زدرسی.			
	1336	E-3	6.6	6.6			7.				**************************************			
	1334	E-2	6,9	6.8										
	1345	E-1	6.7	6.6			,				. Inter-			
	1346	F-5	6,5	65										
	1354	F-A	6,2	6,2										
	1354	F-3	68	6.8										
	35/400	F-2	6.8	6,8					1.7					
	140	F-1	6.8	6.8					,					
	1400	A-1	6.5	6.5							1			
	545	200 ANN	12.1	1/2/										
			7-11											
OMMENTS);													

PMF-013

CARNOT -

CARNOT CONTINUOUS EMISSIONS MEASUREMENTS

CLIENT UCOT- WIMOL.	AMBIENT TEMP., DB/WB:
DATE: 6/28/94	BAROMETRIC PRESSURE:
OPERATOR: KF	DUCT STATIC PRESSURE:
TEST LOCATION: 2-2-CEM	FUEL:
TEST HUMOSES	

TEST NO.	SAMPLE	SAMPLE POINT/		REF DRY, UNCORRECTED								CORRECTED TO%, DRY		
	TIME	CONDITION	02	02	co	NOx	NO	NO ₂	SO ₂	CO	NOx	so		
	545	2000 Spar	13/2	1/129				-						
	537	F5	7,0	7.0										
	536	F4	6.4	6.5										
r	939	F3	7,3	7.4										
***	992	F2	7.0	7,0										
V	998	FI	67	6.7										
	951	直5	6.5	6.5										
	95R	e-4	6.7	6.8										
	1200	E-3	7.1	7.1										
•	1000	E-2	6.9	7,0										
	1003	E-1	6.7	6.8										

PMF-012

CARNOT CONTINUOUS EMISSIONS MEASUREMENTS

CLIENT: UCOS - COLMAC	AMBIENT TEMP., DB/WB:
DATE: 6/28/94	BAROMETRIC PRESSURE:
OPERATOR:	DUCT STATIC PRESSURE:
TEST LOCATION:	FUEL:
TEST NUMBERS:	

TEST	SAMPLE	SAMPLE POINT/		Reb	DRY, U	INCORRI	ECTED			CO:	RRECTE	
NO.	TIME	CONDITION	0,	:0,	CO	NOx	NO	NO,	SO,	CO	NOx	SO,
2-2	1009	D-5	6.9	7,0								
,	105	p-4-	6.3	64					-		Sant.	
	1018	D-3	7,2	7,2	_							
	108	D-2	7,7	7.7							nical re	
	1021	D-1	7,0	7.0).					-A	4-45	
	1024	C-5	6.5							7-		
	1036	C-1	6,6	6,6				,				
	1039	C-3	6.5	6.6								
	104D 1045 104X	C-2	6,4	c,4								
	1098	C-1	.7.4	7.5								
·												
												:
COMMENT	S:					*						

PMF-013

CARNOT -

CARNOT CONTINUOUS EMISSIONS MEASUREMENTS

CLIENT: VCOS-Colman	AMBIENT TEMP., DB/WB: 105
DATE: 6/28/94	BAROMETRIC PRESSURE: 29,92
OPERATOR: 9	DUCT STATIC PRESSURE:
TESTLOCATION: Out let # 2	FUEL: Su Moso
TEST NUMBERS: 2-2-ST	

TEST	SAMPLE TIME	SAMPLE POINT/		Per DRY, UNCORRECTED CORRECTED TO								
NO.		CONDITION	0,	٥,	CO	NOx	NO	NO ₂	SO,	CO	%	\$0
	105/	15-5	6.0	6.1				-				
	1057	13-4	6.2	6.3								
	105/20	13-3	6.5	6. C								
	1100	B-2	6.7	6.8								
	1103	15-1	6.6	6.7								
	1109	-A-5	7,1	7.3								
	1113	A-4	6.7	6,9								
	1118	H-3	7.4	-7,5	-							
	111821	Q-2-	67	6.8								
1	1124	14-1	6,4	-6.6								
	915	STAN	12.2	1/4								
DMMENT.	S:											

CARNOT

PMF-013

Appendix C.3
3D Flow Data

Client/Location 1/05 Cal Mac	Date: 6-28-9 1/
Sample Location: Unit 1 outlet	Data Taken By: Dare Wonley
Unit No:	Test Description: 3-D AVECCITE
Tost No: 1-3-BD - tracerse	Pitot I.D. No.:
Barometric Pressure (in Hg):	Pre-Test Leak Check 6.4
Static Pressure in Stack (iwg):	Post-Tost Leak Check: 0, 4

		,	Yaw Angle	Velocity	Pitch	Temperature
Time	Port	Point	(Degrees)	(P1-P2)	(P4-P5)	(F)
	D	7	- 10.	. 45	0	4/13
		6	~ 6	e 477		4/3
		.5	- 5	0413	7.01	414
1215		4	. 0	.40	+,0	414
		.3	/	-79:	4.01	416
		7	0	. 34	10	416
			0 '	.3/	4.01	4/15
	AC RC	7	-10	- 4	0.4	415
	R C	6	- 5	.35	02	416
		5	- 5	•37	-00	4110
	:	4	0	.75	Q	4/7
		3	. + 5	. 41	4.01	4117
		7	+8	.4	1.02	417
		(+10	. 73	+,07	417:
	73	7	~ 5	,56	<i>`</i>	416
		_6	-10	. 57	<u>්</u> උ	4117
		.3	- 6	48	0	. 4/17
		4	~ 8	. 34	07	4117
		.7.	0	, 26	+. 03	4117.
		2	+7	:2.6	+.07	417
			+8	, 28	+.61	417

Note: Clockwise rotation of the probe corresponds to a positive yaw angle; > 0 or > 90 degrees:

3D_DATA.XLS 2/14/94 8:03 PM

ClienVLocation UCOS Colmac	Date: 6-28
Sample Location: Unit / C-+Let	Data Token By: Dove U.
Unit No:	Test Description: 3-D +1 wers
Test No: 1-7-30 - tracte	Pitot I D. No.:
Barometric Pressure (in Hg) 29.80	Pre-Test Leak Check
Static Pressure in Stack (iwg):	Post-Tost Leak Check:

			Yaw Angle	Velocity	Pitch	Temperature
Time	Port	Point	(Degrees)	(P1-P2)	(P4-P5)	(F)
	A	7	- 18	59	- 107	415
		6	- 8	.48	~-07	416
		5,	- 6	.48	03	4/18
		4	0	, 5	05	418
		3	- 8	.57	~104	4/19
		~	- 0	. 6	05	4/19
_		/	0	. 6	-107	419
		7	*5	. 57	. 0	4/19
	- P	6	- S	,55	0	420
		5	.0	,56	\circ	420
		4	0	-6	6	420
	ļ	7	~ 3	. 58	C	420
***		2	~2	6	2-03	420
		ı	- 2	. \$ 8	502	4/20
		7	-4	. 5	~.01	418
		6	0	,6	> 203	418
		5	42	.55	7.04	419
		4	00	,52	7,04	419
,		3.	0	1,62	~ . 04	419
		ス	0	- 62	04	419
Carlotte St.		(0	60	03	419 7

Note: Clockwise rotation of the probe corresponds to a positive yaw angle: > 0 or > 90 degrees.

3D_DATA XLS 2/14/94 8:03 PM

ClienvLocation UCC	Dale: 8-28-59
Sample Location: Unit Z cutlet	Data Taken By: O. C.
Unit No: 2	Test Description: 3 - D
Tesi No: 2-2-3D	Pitot LD, No.:
Barometric Pressure (in Hg):	Pre-Test Leak Check
Static Pressure in Stack (ing): -(),75	Post-Test Leak Check:

		T	·		T	I
			Yaw Angle	Velocity	Pitch	Temperature
Time	Port	Point	(Degrees)	(P1-P2)	(P4-P5)	(F)
1035	A	7	- 6	- 55	05	479
		6	~ 9.	.45	5	439
		5	- 12	. 45	05	43.9
£		4	- 3.	-5	05	43.9
P _r who		3	- 9	, 6	04	439
13.95 27		7	8	. 6	5	43.3
		1	· · 8	-5.5	~.00	440
	73		15	0.7	~.00	43.9
	:	6	- 7	,65	. 0	479
		5	0	· 57_	0	439
		. 4	7	-48	0	439
		て	-2_	.72	0	479
1.		Z	- 3	.25	<i>a</i>	438
		/	- 15	.27	02	438
	<	7	0	. 41	101	437
		(0	. 42.	62	436
		5	0	. 37	01	437
		4	-2	777	1.01	437
		3	- 4	.,3 C	1.62	437 .
		.2_	- 7	4	4.02	477
			-9	. 36	1-02	437
Nois Close	11250 rotali	on of the per	. / obe corresponds to a :	Continuo van anglo:	,	

Note: Clockwise rotation of the probe corresponds to a positive yaw angle: > 0 or > 90 degrees.

3D_DATA.XLS 2/14/94 8:03 PM

ClienVLocation VCOS Colmac	Date: 6-27-94
Sample Location: (DU +/et	Data Taken By: Dave Wonders
Unit No: 2	Test Description: 3 - D
Test No: 2-2-3D- Vel	Pitot I.D. No.:
Barometric Pressure (in Hg): 29.82	Pre-Tosi Loak Chock O. K.
Static Pressure in Stack (ive):	Post-Test Leak Chock: O. K

			Yaw Angle	Velocity	Pitch	Temperature
Time	Port	Point	(Degrees)	(P1-P2)	(P4-P5)	(F)
	F7		-70	. 5-5	05	-
	6		-70	.57	04	4/4/6
	5		- 7 "	-50	06	441
	4		-60	.55	03	443
	-3		~ (.66	03	441
	Z		- 8-	.60	0	442
-	(-10	.52	+.07	445
	E	7	-90	-52	0	.441
		6	- 10	.52	+:01	442
		5	- 5	- 54	+.02	4/42
		4	-7"	.55	0	442
		3	- 3	.53	0	441
		ス	~ 90	-53	0 .	441
		1	-10	.55	+02	440
	D	7	0	-49	0	440
	1	6	+(.45	7-102	478
1		5.	- 2	-42	4.02	437
		4	ò	. 39	+ .01	437
		3	0	.,36	D	437.
		2	-38	.30	01	H3 7
		1	12	,25.	0	437

Note: Clockwise rotation of the probe corresponds to a positive yay angle: > 0 or > 90 degrees.

3D_DATA.XLS 2/14/94 8:03 PM

APPENDIX D CALCULATIONS

3D VELOCITY - DATA AND WORKSHEET

DCO2 COTMYC

1.14

೦೪ರಡ ಕೊಡ

Client

Unit

Sample Location:

Date

EF

29.90

Data By:

Baro Pressure, in Hg.:

		Sam	ple Location:	Ovůc	a duct					zuie' in taß":	29.50	
			Test No.:	2 - 1	-3d		*			wG: art. lo	-0.78	
		F	robe ID No.:	B-2	131				Abs. Pres.	sure, In Hg.:	29.84	
			Unit Load:						Average	O2, % dry:	6.70	
			Test Date:	6/2	8/94				Average C	001, % dn;	12.00	
		Time	(Start/Stop):		01145				Moisture (Content %:	15,00	
		211115	(зыловгор).	0,,,,	.,,,,,					Weight wet	28.36	
									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		20.20	
								W . W . (70	77.1-	-11
Sar	nple	Yew	Pluh	Total	Stack	P4-P5/	Pitch	PI-Ps/	VI - 10	Result	Velo	-
Po	Int	Angle	P4-P5	P1-P2	Temp	P1-P1	Angle	P1-P2	Pt-Ps	Angle	uncorr."	Axiol
		deg.	In WG	in NG	P	in WG	deg.	In WG	In WG	deg.	(bs	fps
Α	7	-10	-0.03	O. 5 B	415	-0.05	-3.2	00.1	0.58	10.5	66.1	65.0
A	6	-8	-0.03	0.48	416	-0.06	•3.8	1.00	0.48	8.9	60.2	59,4
A	5	-6	-0.03	0.48	418	-0.06	-3.8	1.00	0.48	7.1	60.2	59.8
Α	4	0	-0.05	0.50	418	-0.10	-6.1	1.00	0.50	6.1	61.5	61.2
A	3	0	-0.04	0.57	419	-0.07	43	1.00	0.57	4,3	65.7	65.5
Α	2	Q	-0.05	0.60	419	-0.08	-5.1	1.00	0.60	5.1	67.4	67.2
Α	1	0	-0 03	0.60	419	-0.05	-3.1	1.00	0.60	3 1	67.4	67.3
E	7	-5	0.00	0.53	419	0.00	0.0	1.00	0.53	5.0	63.2	63.0
E	6	-8	0.00	0.55	420	0.00	0.0	1.00	0.55	8.0	64.4	63.8
Ē	5	0	0.00	0.56	420	0.00	0.0	1.00	0.56	0.0	65.0	65.0
E	4	0	0.00	0.60	420	0.00	0.0	1.00	0.60 -	0.0	67.3	67.3
	3			0.58	420	0.00	0.0	1.00	0.58	3.0	66.2	66.1
E		-3	0.00		420	0.05	3.2	1.00	0.60	3.8	67.2	67.1
Ē	2	-2	0.03	0.60		0.03	2.2	1.00	0.58	3.0	66.1	66.0
Ė	1	-2	0.02	0.58	420		-1.3	1.00	0.50	4.2	61.4	61.2
F	7	-4	-0.01	0.50	418	-0.02		1.00	0.60	3.1	67.3	67.2
F	6	0	-0.03	0.60	418	-0.05	-3.1		0.55	4.9	64.5	64.3
F	5	2	-0.04	0.55	419	-0.07	-4.5	1.00				62.5
F	4	. 0	-0.04	0.52	419	-0.08	-4.7	1.00	0.52	4.7	628	68.3
F	3	0	-0.04	0 62	419	-0.06	-4 .0	1.00	0.62	4.0	68.5	
F	2	0	-0.04	0.62	419	-0.06	-4.0	1.00	0.62	4.0	68.5	68.3
F	1	0	-0.03	0.60	419	-0.05	-3.1	1.00	0.60	3.1	67.4	67.3
D	7	-10	. 0.00	0.45	413	0.00	0.0	1.00	0.45	10.0	58.1	57.2
D	6	-6	0.01	0.47	413	0.02	1.4	1.00	0.47	6.2	59.3	59.0
D	\$	-5	0.01	0.43	414	0.02	1.5	1.00	0.43	5.2	. 56.8	56.5
D	4	0	0.01	0.40	414	0.03	1.6	1.00	0,40	1.6	54.7	54.7
D	3	1	0.01	0.39	416	0.03	1.6	1.00	0.39	1.9	54.1	54.1
D	2	0	0.00	0.34	416	0.00	0.0	1.00	0.34	0.0	50.6	50.6
D]	0	0.01	0.31	415	0.03	21	1.00	0.31	21	48.2	48 2
C	7	-10	-0.04	0.40	415	-0.10	-6.1	1.00	040	11.7	54.9	53.8
C	6	-10	-0.02	0.35	416	-0.06	-3.5	1.00	0.35	10.6	51.4	50.5
C	5	-5	0.00	0.37	416	0.00	0.0	1.00	0.37	5.0	52.7	52.5
C	4	0	0.00	0.35	417	0.00	0.0	1.00	0.35	0.0	51.3	51.3
č	3	5	0.01	0.41	417	0.02	1.6	1.00	0.41	5.2	55.5	55.3
Ċ	2	8	0.02	0 40	417	0.05	3.2	1.00	0.40	8.6	54.8	54.2
Č	ī	10	0.03	0.33	417	0.09	5 9	0.99	0.33	11.6	49.8	48.7
18	7	-9	0.00	0.58	416	0.00	0.0	1.00	0.58	9.0	66.0	65.2
			0.00	0.57	417	0.00	0.0	1.00	0.57	10.0	65.5	64.5
B	6	-10		0.48	417	0.00	0.0	1.00	0.48	6.0	60.1	59.8
8	5	-6	0.00			0.06	3.8	0.99	0.34	8.8	50.5	49.9
В	4	-B	0.02	0.34	417		7.6	0.99	0,26	7.6	44.2	43.8
В	3	0	0.03	0.26	417	0.12			0.26	10.3	44.2	43.5
В	2	7	0.03	0.26	417	0.12	7.6 2.3	0.99 1.00	0.28	8.3	45.9	45.4
В	1	8	0.01	0.28	417	0.04		1.00	0.20	0.3	73.7	72,1
•						REST	JLTS					

Yaw Angle: 2.0 degrees Pitch Angle: -0.4 degrees

56 ბიდილ Resultant Angle: 3.3 degrees Standard Deviation:

0.48 417 F Stack Temperature: 59.45 fps (feet per sec.) Velocity*: Azial Velocity: 59.08 fps

"velocity in the direction of flow

CARNOT 15991 Red Hill Ave., Suite 110 714-259-9520

FAX 714-259-0372

STRATIFICATION CHECK

Client: Project #: Unit No: Date:	UCOS COL 1409-40950 1.0 6/28/94						
Point	O2pt	Ref O2	% Diff	Point	O ₂ pt	Ref O2	% Diff
A.5	6.9	6,9	0.0%	D5	6.5	6.4	-1.6%
A4	7.2	7.1	-1.4%	D4	6.6	6.6	0.0%
A3	6.7	6.7	0.0%	D3	6.7	6.7	0.0%
A2	7.0	7.2	2.8%	D2	6.6	6.6	0.0%
Al	6.5	6.5	0.0%	Dl	6.7	6.7	0.0%
B5	6.5	6.5	0.0%	E5	7.0	6.9	-1.4%
B4	6.7	6.7	0.0%	E4	6.6	6.6	0.0%
B3	6.7	6.6	-1.5%	E3	6.6	6.6	0.0%
B2	6.3	6.2	-1.6%	E2	6.9	6.8	-1.5%
Bl	6.5	6.5	0.0%	E1	6.7	6.6	-1.5%
C5	6.6	6.5	-1.5%	F5	6.5	6.5	0.0%
C4	6.3	6.2	-1.6%	F4	6.2	6.2	0.0%
C3	6,4	6.4	0.0%	F3	6.8	6.8	0.0%
C2	6.9	6.8	-1.5%	F2	6.8	6.8	0.0%
C1	6.7	6.7	0.0%	F1	6.8	6.8	0.0%

O2 Stratification=

-0.4%

CARNOT 15991 Red Hill Ave. Suite 110 Tustin, California 92680 714-259-9520 FAX 714-259-0372

40985.XLS/1-1-Strat

3D VELOCITY - DATA AND WORKSHEET

Date:

UCOS COLMAC

Client

			Chenu		JOLMAC					Date:		
			Unit		7.2					Data By:	EF	
		Sar	nple Locstion:		ct duci					sure in Hg.:	29.90	
			Test No:	2-7	2-3d				Static Pres	sure, in WG:	~0.78	
			Probe ID Na.:	B-2	2131				Abs. Pres	sure, la Hg.;	29.84	
			Unit Load:						Average	02, % dry.	6.70	
			Test Date:	6/2	8/94				Average (CO2, % dry.	12.00	
		Пm	e (Start/Stop):	0950	/1145				Moisiure	Content %:	15.00	
									Molecular	Rielght wet:	28.36	
										,		
5,	umplė	Yaw	Pilch	Total	Stack	P4-P5/	Pitch	Pt-P⊌		Result	Velo	ritu
	olnt	Angle	P4-P5	P1-P2	Temp.	P1 P2	Angle	P1-P2	Pt-Ps	Angle	uncom.*	لقائد 🖈
•	Circ	deg.	lo WG	In WC	F	le WG	deg	In RVG	In WG	deg.	Гре	fps
		0.5%	, a		,		1.0	2, 1, 0		- L.	- 20	.,,-
Α	7	-6	-0.05	0.55	439	-0.09	-5.5	1.00	0.55	1.8	65,3	64.6
Α	6	-9	-0.05	0.45	439	-0.11	-6.7	1.00	0.45	11.2	59.1	58.0
A	5	-12	-0.05	0.45	439	-0.11	-6.7	1.00	0.45	13.7	59.1	57.4
A	4	-3	-0.05	0.50	439	-0.10	-6.1	1.00	0.50	6.8	62.3	61.6
Α	3	-9	-0.04	0.60	439	-0.07	4.1	1.00	0.60	9.9	68.1	67.1
Α	2	- B	-0.05	0.60	439	-0.08	-5.1	1.00	0.60	9.5	68_2	67.3
Α	1	-8	0.00	0.55	440	0.00	0.0	1.00	0.55	8.O	65.2	64.5
В	7	5	0.00	0.70	439	0.00	0.0	1.00	0.70	5.0	73.5	73.2
В	6	-3	0.00	0.65	439	0.00	0.0	1.00	0.65	3.0	70.8	70,7
В	5	0	0.00	0.57	439	0.00	0.0	1.00	0.57	0.0	66.3	66.3
В	4	-1	0.00	0.48	439	0.00	0.0	1.00	0,48	1.0	60.9	60.8
В	3	-2	0.00	0.32	439	0.00	0.0	1.00	0.32 -	20	49.7	49.7
В	2	-3	0.00	0.32	438	0.00	0.0	1.00	0.25	3.0	43.9	
В	í	-15							0.27			43.8
С			-0.02	0.27	438	-0.07	-4.5	1.00		15.7	45.7	44,0
	7	0	-0.01	0.41	437	-0.02	-1.5	1.00	0.41	1.5	56.2	56.2
C	6	0	-0.02	0 42	436	-0.05	-2.9	1.00	0.42	2.9	56.9	56.8
C	5	0	-0.02	0.37	437	-0.05	-3_3	1.00	0.37	3.3	53.4	53.3
C	4	-2	-0.01	0.37	437	-0.03	-1.7	1.00	0.37	2.6	53.4	53.3
С	3	- 6	0.02	0_36	437	0.06	3.6	0.99	0.36	7 0	52.6	52.2
С	2	-3	0.02	0.40	437	0.05	3.2	1.00	0.40	4.4	55.4	55.3
С	1	-9	0.02	0.36	437	0.06	3.6	0.99	0.36	9.7	52.6	\$1.8
F	7	-7	-0.05	0.55	440	-0.09	-5.5	1.00	0.55	8.9	65.3	64.5
F	6	-3	-0.04	0.53	440	-0.08	-4.6	1.00	0.53	5.\$	64.1	63.8
F	5	- 6	-0.06	0.50	441	-0.12	-7.2	1.00	0.50	9.4	62.4	61.5
F	4	- I	-0.03	0.59	443	-0.05	-3.1	1.00	0.59	3.3	67.7	67.6
F	3	-8	-0.03	0.66	441	-0.05	-2.8	1.00	0.66	8.5	71_5	70.7
F	2	-10	0.00	0.60	442	0.00	0.0	1.00	0.60	10.0	68.1	67.I
F	1	-9	0.07	0.52	445	0.13	8.9	0,99	0.52	126	63.4	61.9
E	7	-10	0.00	0.52	441	0.00	0.0	1.00	0.52	10.0	63.4	624
E	6	-5	0.01	0.52	442	0.02	1.2	1.00	0.52	5.1	63.4	63.2
E	5	-7	0.02	0,54	442	0.04	24	1.00	0.54	7.4	64.6	64.1
E	4	-3	0.00	0.55	441	0.00	0.0	1.00	0.55	3.0	65.2	65.1
E	3	-9	0.00	0.53	441	0.00	0.0	1.00	0.53	9.0	64.0	63.2
Ë	2	-10	0.00	0.53	441	0.00	0.0	1.00	0.53	10.0	64.0	63.0
E	1	0	0.02	0.55	440	0.04	2_3	1.00	0.55			65.1
D	7							1.00		2.3	.65.1	
		I	0.00	0.49	440	0.00	0.0		0.49	1.0	61.5	61.5
D	6	-2	0.02	0.45	438	0.04	2.8	1.00	0.45	3.5	58.8	58.7
D	5	0	0.02	0.42	437	0.05	3.1	1.00	0.42	3.1	56.8	56.7
D	4	0	0.01	0.39	437	0.03	1.6	1.00	0.39	1.6	54.8	54.7
D	3	0	0.00	0.36	437	0.00	0.0	1.00	0.36	0.0	52.6	52.6
D	2	.3	-0.01	0.30	437	-0.03	-2.1	1.00	0.30	3 6	48.1	48.0
D	1	2	0.00	0.25	437	0.00	0.0	1.00	0.25	2.0	43.9	43.8
						RESUI	LTS					

Yaw Angle: 4.4 degrees
Pitch Angle: -1.0 degrees
Resultant Angle: 5.9 degrees
Standard Deviation: 4.0 degrees

Stack Temperature: 439 F

Velocity": 60.18 fps (feet per sec)

Artial Velocity: 59.71 fps

CARNOT 15991 Red Hill Ave., Suite 110 Tustin, California 92680 714-259-9520 FAX 714-259-0372

^{*}velocity in the direction of flow

STRATIFICATION CHECK

Client: Project #: Unit No: Date:	UCOS COL 1409-4098: 2 6/28/94						
Point	O ₂ pt	Ref O2	% Diff	Point	O ₂ pt	Ref O2	% Diff
F5	7.0	7.0	0.0%	C5	6.5	6.4	-1.6%
F4	6.4	6.5	1.5%	C4	6.6	6.6	0.0%
F3	7.3	7.4	1.4%	C3	6.5	6.6	1.5%
F2	7.0	7.0	0.0%	C2	6.4	6.4	0.0%
F1	6.7	6.7	0.0%	C1	7.4	7.5	1.3%
E5	6.5	6.5	0.0%	B5	6.0	6.1	1.6%
E4	6.7	6.8	1.5%	B4	6.2	6.3	1.6%
E3	7.1	7.1	0.0%	B3	6.5	6.6	1.5%
E2	6.9	7.0	1.4%	B2	6.7	6.8	1.5%
El	6.7	6.8	1.5%	Bi	6.6	6.7	1.5%
D5	6.9	7,0	1.4%	A.5	7.1	7.3	2.7%
D4	6.3	6.4	1.6%	A4	6.7	6.9	2.9%
D3	7.2	7.2	0.0%	A3	7.4	7.5	1.3%
D2	7.7	7.7	0.0%	A2	6.7	6.8	1.5%
Dl	7.0	7.0	0.0%	AI	6.4	6.6	3.0%
O2 Stratifica	ation≃	1.0%					

CARNOT 15991 Red Hill Ave. Suite 110 Tustin, California 92680 714-259-9520 FAX 714-259-0372

40985-XLS/2-2-Strat

APPENDIX E STRIP CHARTS

			a, tere i	3			· · · · ·	3,77	1.	e e e e e e e e e e e e e e e e e e e	17.7		TO THE REAL PROPERTY.				**· ¿* -					
ي د 2	0024 RF			1																		
. Zº 07: 43 ℃ 1	1 13													村							法	
																				11		2,212
																				11		
														12.1			科					
	D2 FRRHURE															4:1-1:1	(2).				村村	- NOT V
20 14/213												1301					1.1	1-2-1-1	FER			4
	7790102												11173 1111	14-1	1 14 1 14	1/9	4H	60	111	/-0	10	() 27
2							29.19 29.19	和影響			44	8-9-4 113-					* /				125 b	320
	102 1	(1. / 宣祀		10 10			144 143		9	-6914 14:54-	**************************************	H I	∤ \$=	11.1	3.40	22 k		111		
- 1.				3 1 1	1 1 1											1	11					
									03	THE		111										
F . 2	5 6037 RF		1									5 64	1			- 1	(2 Z)1	111				
9 14/12	\$. 502 RT	101	120		307				5 (1) 5 (1)	الام	111	<u> </u>		70 :	:[]:	80	111		90)0 1.3
R 14:07	9. 503 + RF											1.1	1 1 1 1 1	1 1	: []		ili			1	1	
rF 28 14:06	5 502 x R0F			道山		1-1-1					111	1::						Ш		Ш		
										1111		1.		1						ii		2.02
								1						1:1:	1111	2/				111	2K , ≈ , 0	
	8 AV 02				1	IF					1111			1	:	· [;	111	3 D C	1618	111		
1	AS-7890			100 100 100		02				1111				111	<u> </u>					111		<u>.</u>
						壯	17	2							111		111			H		1
						相 行	• 73) of 2			177	<u> </u>	1 1 1 1	1117	1137				<u> </u> 	111 111		

	I ; []	i 10 <u>. 11</u>	<u>inggelesajar</u>	1 - 1 - 1 - 1 - 1 - 1 - 1	designinity	ाम मामामामामा
	1					
	102	Jun. 28. 94 14: 3: 02 132 N	2 20 = 02 ×	02	±02 02× RF	20.1024 8F
141UL 1						
02 K - RF						604 100 27/2
THIUL A						
			102	S A SA	12 102 15	THE STATE OF
THE VENT OF THE PERSON OF THE						
VZX EF	100000000000000000000000000000000000000					
THITUL T		15 100 3 1 E 2 1 1 1 2 1 3 0 E		50 60	70	0 - 1 - 1 - 90 - 3 - 1 - 100
02 02 02 02 02 02 02 02 02 02 02 02 02 0						
021						
02 F F 2 3 02 F 2 6	2-85- es 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1					
INTUL						2
DZ# RF (~~) × DZ JUN, 28 13/57	5 vez F		6			
	6 2 6 2 4 16 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		6.3			
10 T. 28 3 5 64						
02 F 5 151517						
C2M RF	51 8024 Ref.		F-B			
INTVL 1		102.4	141			
02 7 3145 7						
12 BF 6 12	5 602 RF				70 - 1	
THIUL THIUL	2 17 1 2 2 2	20		50 - 60		0 1 1 00
02 RF 6 9 1	51.6624 RFI [7]					
02H AT . 6-4	101-027					
147.20						
ับซื้อ2As	10 10 10 10 10 10 10 10 10 10 10 10 10 1	20 1	240 of 265	ا.! الـالـــــــــــــــــــــــــــــــــ	TTTTT111111111111111111111111111111111	(1171111111111111111111111111111111111

× 02 - \$1.5.3.0	61927921111	unadori II	1114444	拥捕	보니	ынн	相封		排持	111						11	444		
																	1	### 1 2	
THIOL TO						11/14								(123				TI C	
02 RF 10101 PF 10101	2.65 27 6 8 9 9 9 9 9 9 9 9 9				5		1							90	6				
02 20 10 10 10 10 10 10 10 10 10 10 10 10 10								111											
7.5															2.4	55			
2100						28 V 7		1111					3111						ų.
FS														, -	114				
OFF RESERVED					Dンζ								+11						
WINE TO SERVE			Tijak ker	1. Ph		F2 Z			13-H-16 1-1-1-1			H414	14-13					2.0	
Jun. 28 13:45								1 1					\$ 10	112			计量		
2= RF-E / L				32 27	c_{1}			17.1			1								
HTUL 1 D2		20		2			50		60		70		80			00			
3 02 3 02 3 13132																		ili.	. EX
Jun. 28 13:36	802- RX - 1																		, m
INTOL 1	9024 389		HIL					H				+				H			
27.28 13:33 A		8.00		F	- 4		THE	1	15 14				20				76	1	
02 K P.F. 6 9	602x 805; 684×92;						1					-[][1	
- 02 ×	7224 87														III.	111	}		
100 P										4 4								1	
					//														
						11 F1									<u> </u>	13	26	1 1 0	
2×2 5 DA	624 Ro]						- . . - 3 4					
AT I	02× RF				3							{ . . .			111				
" "' // p. "	Prioz	国出"国民	11-72	P	4														
92 % RF 6.7	028 851 1 11.													111		111			
CARE CI OLIV	62 cr 10	6.49 20.4	2030		300		50 1		50		70						135		y (2)
(2) 7 7 6 6 6 6 7 7 6 6 6 6 7 7 6 6 6 6 7 7 6 6 6 7 7 6 6 7 7 6 6 7 7 7 6 7 7 7 6 7	S-789048-		2080			1 of 2		11311								1111 1111			
W002AS	5-789048-1	KT-1697			24	1 of 2	65											-	

经 的是是在一个人,我们是是一个人,我们们是一个人的,我们们是一个人的,我们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们
02x 27
USE CONTROL OF THE CO
02
02× 8r 7: 002 8 87 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
222 ar Al 605 170 07
107 0 5 6 203 1 187 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
22
12
2 pr 3 0 1 50 1 70 1 80 1 1 90 1 100
242 of 265

The state of the s 12/10/20 078 RF # 02 J-0.29 11148 FRTVL 1 1 828 84 S 10.0 0.632# RF Moveono 111 1 02% RF 5 02 0 06. 28 11145 1877L 1 23 HHIIII 11:1 3 NTUL 1 20.4024 RF 02 RF ! 7, 102x xsr. 10 20 35 100 90 30 40 80 . . 50 02# RF % 03" 1 Jun-28 11:39 [1774] 7.102× RF. :1.1 HH 004 87 N 50 N 50 N 50 Mallill. 9022 RF 3 17 | 42 | 02 | 1 | 42 | 62 | 64 | 0. 102 12.23 80 202 ort es 245 of 265 W002AS-789048-RT-1697

1105 1	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		
02 T 2000	7 \$ 8 5 - R7 12 6 7 8 GZ		. ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
02 200 02 12:00			
02 n.28 11:57 TUDEL			
02 margon 20 g			ja
TVL 1			
28) 1161			£ .
70 11146 PVC 1 200 200			
2 1145			
AL TANADA			2
2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	141144		4
		70	
m ""			
28 71136	High		
VI.			÷
		1 1 2 2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
20 11:30			
20 11:30 20	2 F 40 2 2 127 1		
i al			
28 11124 VLT3	F. F. F. F.		77. 18
2 A 2			ر موران عرب
			2 3
28 214 38			
# P4			
28 1116 RF AC			-
RF A5	7 363 Br	[M 3] [+ 1] 68 [53,53] 68 [1] [1] [1] [1] 56 [5] 57 [5] 5 [5	
RF.	R 002 R		N
VL 1	3444402 3444402		
RF B1 6	E 702 : E	246 of 265	

	Constitute the	life i d		111	1-13-1	H42-		77			i.H.	11	17]	مَ لِحْدِ	7	41		11			11.	11:	-	П			<u> </u>		11		<u> </u>	P7
		10.2 I		14		102						4. T	2					100		1		113	R		19.	1		I I I				
I NTVI	10.54																							FS	Ř		1 0					
0024 V7-VI		32 (T) (E)																			1	H	1			#		No.	H			1
	0.4							*	The state of the s																	To a						
2	7/1						H C														1					111	111			111		
THINE									K.																		111			11	打	0 2
102 102 101 101 101		100 Y										R			1 	41:										11					<u>111</u> 	
0215 X	E14	7157	2 S						14	1-8	村	1-13	7	7				4.45 X		4	3-					11	i #				*4*	
12= R	AS					20 J	11.1	117				1	1	林	50	44		5	0 19			70			80				10			100
JATVE																									Į,					4		
HEVE			5 3										1							1	1		1						H			
02* RE	BI	1 61	2 1									1		1			1		}		1					1112	1 1					
9410F	153							1	111	- -				*							1								1			
100.28 14TVL							8		 					11	-1	111			1			14										
102 E RF # 302 T Jun 28	[17]		N .			-	675		194- 111			13	2		<u> </u> 	- <u> </u> -			<u> </u>		<u> </u> 		<u> </u>			, 	1 3 m -	282 3	n (1)	9-1		
027 RF	04-							262	<u> </u>			7	4				#								<u> </u>					$^{+}$		-
DZX RF	BS.	E 1972	1-11 3-1	[] [] [] [] [] []				52		T											1 i	1 1										Ĕ
02 4 Jun 28 INTVL	1 0 64		4 1 1	1#41			- 102 - 102 	RF.	111			11:	7 				ti		ij.								1					
02× RF = 02 Jun. 28	10:61		2				32		11:	Ì		1. 1	15	5					ij													
02× 387	C-17	9 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	P#		1), 62 2, 62	Ŗŗ.								Ш				<u> </u>					1				K	
1HIVL	(2		RF						ΗŁ]						11				111	14		1	
- 1370L	10 (FT)						7									1	<u> </u>	<u> </u>								111	111					
5 T X RF × 02 ; JUN 29	- (3%	FATT	2/1/10			20		30			i4 	o 	1	- 1 /	3		-	÷	50-		 	70	1:1		1 180	0' 1	<u> </u>	9	0			H
02¥ ŘF × 02	(4)	5	7			5		5.	; [[; []			r - :	<u> </u>							1			<u> </u>	1	27			<u> </u>	11			-542
DZ= RF	C-5	6 4027	PP			مل] : [[]	♦ 2 ft			<u> </u>		i		1	11		-		11					1	1			$\dagger \dagger$				
3 HTVL	(3) (4) (6) (6) (6) (7) (7) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	C 76	040	P+	160		1143	国	,				1 1	 26	<u>.</u>	1		11			1			11						1		
1	vvUUZA	3-785	1U48	-K I -	.108) (24	+/	UI	∠0:	S																	

× RF C- 1	PP6034 187							71		 	<u> </u>		1		11	<u> </u>	11:						F 1		į		-				1				ĵ	
228 10:46	5 1 5 7 1 R	1					j			=			4	المانة						ļ		1	Ļ				1						1			
29 70:46	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1		7						桐	4	11			1].]. 	; <u>.</u>		[] .		1		-10	-			1		H.			
27 C.7	51 6027 RF	10].	\prod	i 20	1 02 	RF	3)			40			11	52	1	1		60.		\parallel	-	ס ל	H		=	8(<u> </u>			91	, ,			100
vi 1 3 81 .				1			4	34	1						Î			1				1			1					Ĭ.			3		V	
1 m						. 1	The state of the s								<u> </u>	1		1		Ė		1			31.			ŧ					Ī	1		
ir Cise							Į.						1		1	2	Ž											İ								
UC STATE													Į,		*	1.176		- T	3 1				1		拷							Ť				
1 28 3 9/33 UL-1			1				2		1		i	1				ŞĮ		7					1		1			1						H		
22 12 12 12 12 12 12 12 12 12 12 12 12 1	2 202 PS			H				†	1		1			ļ.	I			+			1		ţ.		7			1	0.1	¥						
AF 10120				I	1	ď			1										F						i		7	3° 1			V.		111			
A			17		12 S		1		1	7 <u>9</u>	Z 0		72		1									0.2		á				602	題	RI -				K
							T			1			H	T	1						T		Ī					1		I	T	H	1	1		
DI 012					1	1	1			rsi	!! RF				П	Ì	Ī					3 7			11										*	02
26-40-24			44 -						İ	$\ \ $	ij								T				Į					1	1		Ħ.		1	11		7
が記り上述 2007年2月1日									1		0:21	-	Ì				Ĭ		1		1		+	F	T			İ	F		F	I			FII	
75 77	7 202 NOF 2097 Q2									KI T-		П	7		5		T	1	1				1			İ								ii		
20 10 16 7 Nr OF							1							!	î		Τİ	-	Ħ						1	İ	Ì.		$ar{[}ar{[}ar{[}$,
20 10:15 /		1,01			1172 20		1	- 1 3	باري آنان	ďΖ	RF	- 4(ŷ,	7	7 [50	11		H	60			T	70	17	ij	1	:8:	<u> </u>		ij	.90		i		100
9 L 3 1 1 1 2 2	[이 [다 [다] 중요시]			#									Ü		7		1	1 1							11			į		- 			1	Ţ	11	
RF 0-5	S BANDS !						(1) }		il		H					1	††									i	1				i '		İ		1	_} ;
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1							D2	RF	11		C)-	5	†			Ϊ	+				1		Ħ			ii			:: - 	111			
25 10109 25 10109 26 20106	5 802 V RZ									1	11		i	1		1	T			i				+		il		1	Ť					Ϊ	İİ	,
20 20:06	2 84 47 2 84 47 2 84 47				<u> </u>	<u> </u>		}]].		Î			#						1.		Ť		1	4	ء ا						Ϊ	25	02
RT = -2	9864192	111	111	111	1 1	<u>:4 -</u> [5		5-1 1-1-1	1		H	1		il II		+		1-1-1		+	i i i			1		1	11					П	117	_! [_	<u> </u>	ij
RF C - 4			[]			FI:		#	H	11				<u> </u>	1	1				\parallel		<u> </u>	1	+	n		H	H	11	1				1		
28 10:00 UL 1	briv d2i			111		\$1 _				 	!!			1	11.					77	11		! <u> </u> 		<u> </u>	<u>!</u>	$\frac{\Pi}{\Pi}$! - -	11	3-	28	3			<u>: ! </u> 	1
計石冷	14 1 1 1 1 1 1 1 1 1	1 1 1			<u>; </u>	 -				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11	1 1 1		5	; [: - []	+		1						#		#	-		<u>;;</u>		ы I Д.		<u> </u>			
Woo2AS	PP 1 1 1						7.4	1	-!!	+		11	111	111		-		╫			4	T1		1		11	11		<u>'</u> _			+	 		' i I	
Rr - 7	178024 Hd					<u> </u>		() () ()	p2	T A F		11	=	7	14	+	Щ	1.	<u>H</u>			1	12			#	H	4	1	:4	#	H	11,	<u> </u>		

2 RF 0-5	1002	(RF)			1-1.					{ ·						1	Q	1	4			1	1		1			47 14 321				F							21			11	
NJUL 1	P + 60 2	1		[-]								1		_ }		ň						1		<u> </u>	1			1	-[-			#	1	1		1		3		7	1		
ALAN 11 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	r mraaa	102]		4	1	11:1		11:					li Li	. 1	H	1) [5 - - - - - - - - - - - - - - - - - - -	à.	H	11				11		1	Ì				1	ľ		11		24		1			
E-16	2 3 8 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	02					+	1		4	4	П			1		1	4			1	Ц											1					1	j		ŀ		
TVL 1						H	1			11		1				1					H	H.			1	1							F	1			Ŧ				1		
22 10.06 TOU 1 10.		02			1					Ţ					1	ŧ	1			Ω 1								1	1-	111		1	1		-			Ħ			1,	H] 5 -
シューラ	7 02°	0.2						1				V							7			1	ŀ	3	J	1		1	Y		H		100	ŀ					+			1	Ī
TUL 3		11		1	11	1	Ť			i				ł		Ŕ	ij				Í	1	Ť		Ī	To the second					-	1					3 8 / 2 8	1		-	-[-]	1	-
22 59 57	7223	02					1							1	Ì	٦		Ş		+												Ï				Ť	1	Ħ	İ	1		-	
F E . 5	502	R.T	İ	<u>: , , , , , , , , , , , , , , , , , , ,</u>	Ħ	5	100				Ī				A			I			Ï	F		Ì									24					+			3 6	C	1
27 09154 27 09151 270 09151 270 09146 270 09146 270 09146	- 1	45		ΙÏ		H	+			9	17	1.1	- 1	1	4 	1		ساد 7		2	17				ij				3. ;		11	1 1.					1	+		j 		; ; ; }	
2 09151	698V2] 02!	1					19 		# !! # !!	1		<u> </u>	#	1								1 3	9	1										<u>] </u>		H	$\dagger \dagger$		1	11	<u>! [</u>	
			111		11			 				<u>; </u>]]	- - - -		F		ij				11:				PL COMPANY		i I							:11 -[1]			H	, i , , [5]	1	11	 	
78 09:48 VLF1 - 5	k y 6 4 3	52	111		<u> </u>		1.		17			دوج] F.	1 <u>1</u>		3			11			1				*	1	- -		11:					{	H	#	1.5	7	11	11	-
2 F. 2	1 2 0 0 2 m 2 2 R G m	-RF	. 111	i. Ti		1	1			 	1			<u> </u> 		1	ال.	 作		4-		<u> </u>			9						l K		7 G	٥	1 33			11	: <u> </u>		į,	.	
70 09 46 O			10			1.12	0				136			1		40				45(25(ी जहा	60 <u>.</u>				70		1+		8	0	43		<u> </u>	90	-[1	-] [11	i jo	
XF 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2 0 B 0 N 0	2							11	1		- F 22	1	145	1		E		人			1	Ť			1	1			111		1			1		11	<u> </u>		17	11	<u> </u>	
Ar - Car	4284×0					!		1	سل ۱		<u> </u>	ŀ		1 15		Ţ				*					- -		1		F			<u> </u>			1	1	:			1	11		
.78 (09:39 T	11111	1111					1				-		1	1	.	_	1	>									1	1								11			1		<u> </u>	Щ	
28r /	002 × 0	RT 2] ;]	Ħ	5	, [بآ لِ	1.6	2 2	-	}			1		9			1.					;			1				7 7) ; 	Ш					4	1		
RF B		ijĦ	Ь		1		į.			02	<u> </u>		μ.		36		-11			Ė					li		4								1	H			ij	ij			
29 02:33	5 7 8 V × C	Hi				į	1			7		· † .		-	Ē	- [냺		- - - - - - - - - -		L	[]		1			1								H						$\ $		
RF. T. S	1 1 1 1 1 1 1 1 1 1	RF	1.1	11	11		1-	7	F	1						H	T	7	1	1.		<u>.</u>		- -	1]			-		1			JÌ	I		11		11	Ħ			
28 09:30	02 8	T			Ħ		1	il.	1			T		+				1	Ţ	1			V	7	T	3	1	4	1		Ŧ			1.	ÌÌ	1	İ		H	İT			
20 09:27 6	VI-I-1/1-2	2 1			1	i.	,	Ť	1			T	İ]- - -	#	7			ز :	1		1	74						, 1	H	1			İ			İ	,
RF 20 20 20 20 20 24	502×	R.F			11	E		1-1	Ħ						1										5 - T	1		1					T T		捐	H		Ti	Ħ	1	<u> </u>		```.
28 09.74	L HEAND	<u> </u>		<u> [</u>				<u>(上</u> 十十			#	Ť.		1-	** 		İ		1	۲				1	i		1	H			1	<u> </u>	1	H			1		1	 .		-	
QF 20	\$\$\$1 19	3	1 -	! 	1			17	H		- 1 1	\parallel	F	<u> </u>		1	<u>}</u>	H	7.	id-	~ \		1	.∐ .∔;	<u> </u>		11	1.	<u> </u> -	i.i. _{i.i.}		<u> </u>	#	9		1	 -	+	<u> </u>	1	1	7	
28 09:24 28 09:21				Ш		1	[.]	: 			-	11	- .			- <u> </u>	<u> </u>		11	1	4 11		11	11	1	1 <u> </u>	-	11	1		11	<u> </u>		3 T	[1] 7P			#	3	11/	Þζ	$^{\rm H}$	للها
29:09:18	PUND	2	#			-	2	#		1	ļį.	$\prod_{i=1}^{n}$	02			} }	11		7.	1.					#	Щ	#	1	<u> </u>	<u> </u>	1]-	H	<u>}</u>	11		11	11.) /\	廾	7 2
W0027				Щ	<u> </u>						4	1	F		1	۱. ارد	ا ا	j. [11	1 26:		Ļ,	Щ	إل	뉉		Ц	Ц	1	Щ	7	<u> </u>	2,1	غ ا-ا	1		Щ		Щ		1		

APPENDIX C SITE SAFETY PLAN

Site Safety Plan Booklet

Finalized: April, 2018

Introduction

Employee safety is the top priority of Montrose Environmental Group. All employees must be trained to mitigate the hazards faced each day. The site manager and project manager/lead are responsible to ensure all hazards have been proper identified and managed. All employees have Stop Work Authority in all situations where an employee feels they cannot perform a job safely or a task for which they have not been adequately trained.

The Site Safety Plan (SSP) has been developed to help assist Montrose test crews with identifying physical and health hazards that could harm our employees and determining how the hazards will be managed. Additionally, the SSP will help each crew manage the health of the employees by providing emergency procedures and information.

The booklet contains all the different safety forms that you may need in the field into one document. The SSP consists of the following:

- 1. A standardized, two-page, fillable pdf, form that is used as the Hazard Analysis and Safety Plan
- 2. Hazard Control Matrix contains useful information on both engineering and administrative controls that a crew can use to reduce or eliminate the hazards they have observed plus applicable PPE that may be required
- 3. Tool Box Meeting Record Keeps a daily record of the scheduled testing for the day and a short refresher of the hazards that were identified in the test location SSP and any hazard controls/PPE.
- 4. Additional Forms
 - a. Aerial Lift Inspection Form
 - b. Heat Stress Prevention Form
 - c. Extended Hours Form
 - d. Safe Work Permit

An SSP for each location must be completed or at least started prior to mobilization and included as part of your Project Test Plan. Each test crew will then assess the hazards again while on-site looking for changes or new hazards. Once an SSP is completed, it will need to be reviewed before set up at each of your client's testing locations. Any day a SSP is not reviewed, a Tool Box Meeting will need to be completed.

The SSP is a living document. Each test crew should update the plan as new hazards are found. The client project manager should continually update their SSPs as new information and conditions result in new or changed hazards. The goal is to provide each crew with the most upto-date hazard and safety information

MAQS Site Safety Plan

Client			Contact Name		[Date			
Location			SSP Writer		F	PM			
Job Prepar	ation				•	<u> </u>			
Job Si	. Job Site Walk Through Completed Site Specific Training Complete Certified First Aid Person								
Site W	alk Through Neede	d Site	Specific Training N	eeded C	Other:				
Facility Info	rmation/Emergen	cy Preparedness							
_	ergency#		Identify a	nd Locate the	following:				
On-Site E	MS Yes	No	Evacua	ation Routes					
EMS Loc	EMS Location Severe Weather Shelter								
Nearest U	Nearest Urgent Care Facility: Rally Point								
	,		Locatio	n of Eye Wasl	h/Safety Shower:				
				•	•				
Source Info	ormation: (list type)	1							
Flue Gas Te	emp. (°F)	- Flue Gas Press. ("I	H ₂ O) Flue	Gas Compone	ents				
	halation Potential?	Yes	No No	·					
	Hazard Protection F	Plan:							
Required P	PE Hard Hat	s Safety Glas	sses Steel To	ed Boots	Hearing Protection				
-	al PPE Requiremer				· ·				
Hi-Vis	=	Harness/Lanyard*	Goggles	Persor	nal Monitor Type:				
Metata	rsal Guards	SRL(s)	Face Shield		ator Type:				
Nome	k/FRC	Hot Gloves	4-Gas Moni						
Critical Pro	cedures – check a	II that apply – "*" i	ndicates additiona	l form must b	e completed				
Hot W	eather Work*	Confined Space*	Aerial Wo	ork Platform*	Roof Work		Scaffold		
Cold V	Veather Work	Lock out/Tag Ou	t Exposure	Monitoring	Other:				
Working a	t Heights Manag	ement							
Fall Protec		d Guardrails/Toebo	ards Fall Pro	otection PPE	Warning Line	9			
Describe	Hazard Protection F	Plan:			· ·				
Falling Obj	ects Protection Pla	an							
Barrica	ding Netting	House Keeping	Tethered Tool	s Catch	Blanket or Tarp	Safe	ty Spotter		
Describe	Hazard Protection F	Plan:							
-									

MAQS Site Safety Plan

Fall Hazard Cor	nmunication P	lan					
Adjacent/Overhead Work		Contrac	tor Contact	Client	t Contact		
-	munication Pla	n:					
-							
Environmental	Hazards - Wea	ther Forecast					
Heat/Cold	Lightnin	g Rain	Snov	w Ice	Tornado	Wind Speed	
Describe Haz	ard Protection P	lan:					
Additional Wo	ork Place Haza	ards					
Physical Hazard	ds	Hazard Controls					
Nuisance D	ust Hazards	Dust Mask Go	ggles Of	ther:			
Thermal Bu	rn	Hot Gloves I	Heat Shield	s Other Protec	tive Clothing:		
Electrical H	azards	Connections Prot	ected from	Elements Ext	ernal GFCI O	ther:	
Inadequate	Lighting	Install Temporary	Lighting	Headlamp			
Slip and Tri		Housekeeping		Area Other:			
	ard Protection P	lan:		_			
-							
<u> </u>							
List of Hazardo	us Chamicals				Other Ch		
Acetone	Nitric Acid	Hydrogon	Dorovido	Compressed Gas		emicais.	
	Sulfuric Acid	Hydrogen		Flammable Gas			
Hexane		1 17					
Toluene	Hydrochloric		ogen	Non-Flammable	e Gas		
Describe Haz	ard Protection P	lan:					
-							
Wildlife/Fauna							
Describe Haz	ard Protection P	lan:					
Crew Names &	Signatures						
Print Nam	e	Signature	Date	Print Name		Signature	Date
			+				

PPE	Gloves, appropriate to task	Hardhat Steel toed boots Work clothes
Administrative Controls	 Stretching prior to and after lifting and lowering tasks to keep muscles and joints loose Break loads into smaller more manageable portions 3 man lift teams during initial set up and tear down w/2 below and one above Job rotation and/or breaks during initial set up and tear down. Discuss potential hazard and controls during tailboard meetings Observe others and comment on technique 	 Review hazards with any adjacent workers & the client so they understand the scope and timing of the job Follow proper housekeeping practices by keeping the test location neat and orderly, keeping trash in bags and non-essential equipment stored when not in use. Perform periodic job site inspections to ensure housekeeping is being observed Review "grab and twist" method of handling tools and equipment between employees
Engineering Controls	 Eliminate manual "lifts" and use elevators and/or cranes when possible. Stairs can also be used where feasible. Use lifting straps and locking carabiners to eliminate the need to continuously tie and untie loads. Use pulley system to eliminate improper ergonomics when lifting and facilitate sharing of loads Winches should be evaluated and used as much as possible to assist Equipment should be evaled on table or other elevated platform to assist with rigging, lifting and prevent bending over when securing equipment to hoist. Maintain radio contact between ground and platform to ensure the process is going smoothly or if a break is needed. 	 Ensure job area is barricaded off with hazard cones, caution tape and/or appropriate warning signs. Specific measures should comply with local plant rules. Ensure a spotter is present during a lift or lowering of equipment. Catch blanket should be used on the platform to prevent objects from falling through any grating. Magnetic trays should be used to hold flange bots and nuts. Tools should be tethered to platform or personnel uniform.
Description	The manual movement of equipment to testing location can cause strains	When working from heights there is a potential of falling objects from elevated work platform striking someone or something below
Hazard	Ergonomic: Strains/Sprains	Falling objects

PPE	• Harness and Lanyard	 High temp. gloves Long gauntlets Long sleeve shirts FRC 	RespiratorSAR	 Ear plugs Ear muffs (check with plant contact on exposure levels)
Administrative Controls	 Review Working from Heights procedure prior to job Maintain 3 points of contact when climbing stairs or ladders Ensure all fall protection equipment has been inspected and is in good working order 	 Work in tandem with partner to immediately fill sample port with heat resistant refractory insulation Stand up wind of port when opening. If stack pressure is greater than 2" H₂O, a face shield is required. Allow appropriate time to handle probes Notify all team members at the test location when a probe is removed from a hot source and communicate to all crew members to exercise caution handling or working near the probe 	 Stand up wind of ports Use a gas monitor to ensure levels of contaminants are below PEL 	 Set up equipment or trailer as far away as possible from noise producing plant equipment.
Engineering Controls	Verify anchor point Warning Line system	 Use heat resistant refractory blanket insulation to seal port once probe is inserted. Use duct tape to further seal the outer flange area of the port. Use heat resistant blankets to shield workers from hot sources 	 Probe are to be sealed to prevent stack gases from leaking out Ventilation, open all doors and window to dilute concentrations in work area Vent analyzer or meter outside 	NA
Description	Fall hazard exists when working from above 4' with no guardrails	Flue gas temperature can be elevated and that can lead to hot temperature testing equipment. Hot pipes or other duct work at plant.	Air concentrations could be above PEL	Production areas of plants could be high
Hazard	Fall	Bum	Atmosphere	Hearing

PPE	• N/A	Appropriate clothing for conditions	 Appropriate clothing for conditions Sunscreen 	Appropriate clothing for conditions	HardhatSteel toed bootsSafety glassesHarness/lanyardGloves	HardhatSteel toed bootsSafety glassesHarness/lanyard
Administrative Controls	 Observe proper housekeeping If conducting hot work, review procedures and permitting with site contact 	Lightning policyJHA review of weather dailyPlant severe weather warning systems	 Frequent breaks Additional water or electrolyte replenishment Heat Stress Prevention Form Communication with workers Share work load 	 Calculate wind chill Frequent warm up periods Communication with workers 	 AWP pre-use inspection can identify problems with equipment Site walk through can identify overhead and ground hazards 	 Scaffold inspection prior to use can identify if scaffold meets OSHA regulations Current scaffold training
Engineering Controls	Fire extinguisher at job location	Weather App warning	 Shade Reduce radiant heat from hot sources Ventilation fans 	Hand warmersHeatersWind blocks	 Ensure all fall protection equipment has been inspected and is in good working order Barricade off area where AWP is in use 	 Yellow tagged scaffold may require harness & lanyard Inspect harness & lanyard prior to use Barricades Netting
Description	High flue gas temps, chemicals, electricity could cause fire	Conditions may pose significant hazards	Extreme hot temperatures can cause physical symptoms	Extreme cold temperatures can cause physical symptoms	Overhead and ground hazards pose dangers	Fall hazard
Hazard	Fire	Weather	Hot Weather	Cold Weather	AWP	Scaffold

PPE	 Safety glasses Chemical gloves Lab coat Ventilation Goggles/Face shield as needed 		
Administrative Controls	 Spill kit training Lab SOP Good housekeeping Personal hygiene 		
Engineering Controls	 Chemical containers stored properly Ventilation Properly labeled secondary containers 		
Description	Chemical fumes or splashing can cause asphyxiation or burns		
Hazard	Chemicals		

Daily Tool Box Meeting Record

Clien <u>t:</u>	Job N	o.: I	Location:	Date:
Scope of	f Work:			
Changes	s in Hazards Any sign	nificant change in Hazards, upo	date Site Specific Plan and sign	off.
Site Spe	cific Plan review			
	Emergency Preparation	Rally Point	Alternate ExitsOb	stacles in Route
	Source	Stack Temp.	Static PressureFlu	e gas contaminants
		Safety 0	S* Goggles Face Shield	Description Personal Monitor Type: Respirator Type: Other PPE:
	Critical Procedures	ScaffoldLOTO	Aerial Work Platform* Roof Work	Confined Space* Exposure Monitoring
	Fall Protection	Guardrails	Fall Protection	Warning Lines
	Working at Heights	Barricading Housekeeping	Tethered Tools Catch Blanket	Netting Other:
	Barricades Morning	Inspection		
		Printed I	Name	Signature
	EOBD I	nspection Printed I	Name	Signature
	Communication	Adjacent/Overhead	WorkContracto	or ContactClient Contact
	Weather	Forecast Temperature Fluids Reminder	Lightning Cold Proper Clothing	Wind Speed Wind Direction Hot*, above 91°F use Heat Stress Prevention Form Ice-Rain Snowy
	Workplace Hazards	DustEl	ectricalSlips, Trips & F	allsThermal BurnLighting
	Chemical	Labeling Storage		inders Secured nple Storage
	Surroundings	Site Traffic Construction Machine Guarding	Trucks Cranes Chemical	Forklifts Wildlife/Fauna Upwind/downwind Hazards
	Harness & Lanyard	Inspected by:		
		Printed Name		Signature
		Printed Name		Signature
		Printed Name		Signature
	Market 1 2	<u> </u>		Test Crew Initials:
Fool Box	Meeting Leader Signature			
Notes:				
				

Montrose Air Quality Services -Daily Aerial Lift Inspection Form

All checks must be completed before operation of the aerial lift. This checklist must be used at the beginning of each shift or after six to eight hours of use.

General Information (Check All That Apply)						
Manually Propelled Lift:	Self-Propelled	Lift:				
Aerial Lift Model Number: Serial Number:						
Make:	Rented Or	Owned?				
Initial Description – Indicate by check Check "No" to indicate that a repair or indicate "Not Applicable."	-	•	•			
Number Item to be Inspected		Yes	No	N/A		
A. Perform a visual inspection of all ae components, i.e. missing parts, torn hoses, hydraulic fluid leaks, etc. Rep	or loose					
B. Check the hydraulic fluid level with t fully lowered	he platform					
C. Check the tires for damage. Check nuts for tightness	wheel lug					
D. Check the hoses and the cables for or chafing.	worn areas or					
E. Check for cracked welds						
F. Check the platform rails and safety	gate for damage					
G. Check for bent or broken structural	members					
H. Check the pivot pins for security						
Check that all warning and instruction are legible and secure	nal labels					
J. Inspect the platform control. Ensure capacity is clearly marked	the load					

Initial Description – Continued Number Item to be Inspected	Yes	No	N/A
K. Check for slippery conditions on the platform			
L. Verify that the Manufacturer's Instruction Manual is present inside the bucket			
M. Check the hydraulic system pressure (See manufacturer's specifications). If the pressure is low, determine the reason and repair in accordance with accepted procedures as outlined in the service manual			
N. Check the base controls for proper operation. Check switches and push buttons for proper operation			
O. Check the platform controls for proper operation. Check all switches and push buttons, as well as ensuring that the drive controller returns to neutral			
P. Verify that a fire extinguisher is present, mounted, and fully charged and operational inside the bucket			
Q. Verify that the aerial lift has headlights and a safety strobe-light installed and fully operational			
R. Verify that the aerial lift has a fully functional back-up alarm			
Print Name of Individual Inspecting Location Aerial Location Date Lift		Da	ate

Heat Stress Prevention Form

This form is to be used when the Expected Heat Index is above 91 degrees F. Keep the form with project documentation.

Project Location:						
Date:	Project Manager:					
Expected High Temp:	Expected High Heat Index:					

- 1. Review the signs of Heat Exhaustion and Heat Stroke
- 2. If Heat Index is above 91 degrees F:
 - a. Provide cold water and/or sports drinks to all field staff. Avoid caffeinated drinks and energy drinks which actually increase core temperature. Bring no less than one gallon of water per employee.
 - b. If employee are dehydrated, on blood pressure medication or not acclimated, ensure they are aware of heightened risk for heat illness.
 - c. Provide cool head bands, vests, etc.
 - d. Have ice available to employees.
 - e. Encourage work rotation and breaks, particularly for employees working in direct sunlight.
 - f. Provide as much shade at the jobsite as possible, including tarps, tents or other acceptable temporary structures.
 - g. PM should interview each field staff periodically to look for signs of heat illness.
- 3. If Heat Index is above 103 degrees F:
 - a. Employees must stop for drinks and breaks every hour (about 4 cups/hour).
 - b. Employees are not permitted to work alone for more than one hour at a time without a break with shade and drinks.
 - c. Employees should wear cool bands and vests if working outside more than one hour at a time.
 - d. PM should interview each field staff every 2 hours to look for signs of heat illness.

Montrose Air Quality Services Extended Hours Safety Audit

Project Number:	Date:	Time:				
Whenever a project is going to extend past a 14 to access the condition of their crew and the sa completed. If a senior tech or a FPM is leading they will need to get permission to proceed fro to proceed from the DM or RVP. Technical R the field or if they own the project. DMs and I	fety of their work g a project, they s m the DM or RV VPs can authorize	c environment must be should confer with the CPM but P. CPMs need to get permission e moving forward if they are in				
Hold test crew meeting. Test Crew	Initials:					
"Extended or unusual work shifts may be a Non-traditional shifts and extended work h to increased risk of operator error, injuries	ours may disrupt th					
The test leader should look for signs of the	following in their	crews:				
IrritabilityLack of motivationHeadachesGiddiness	FatigueDepressionReduced almemory	ertness, lack of concentration and				
The test leader should assess the environm	ental and hazardou	s concerns:				
Temperature and weatherLightingClimbing	 Hoisting PPE (respir Pollutant co H₂S, ect.) 	rators, ect.) concentration in ambient air (SO ₂ ,				
Notify DM or RVP Name:						
	The test leader must contact either the DM or RVP to discuss the safety issues that may arise due to the extended work period. During this time, they can come to an agreement on how to proceed.					
Things to discuss are why the long hours? Client or our delays? Production limitations? Impending Weather?						
Contact client						
needs and come to agreement on how to pr	The test leader, DM or RVP should discuss with client any of our safety concerns, the client's needs and come to agreement on how to proceed. Discussion should also include the appropriate rest period needed before the next day's work can begin. The DM and/or a RVP must be kept in					
What was the outcome?						

SAFE WORK PERMIT								
A. W	ORK SCOPE	(to be completed	d by MEG) – 0	Check relevant box(es) t	to indicate type(s) of wor	·k.		
□ Hot	Work	☐ Line Break	- L	ock-out Tag-out	□ Other		Permit	Timing
Speci- Locat						Date:		Time:
	ment ed On:						Valid	Until
_	to be rmed:					Date:		Time:
		AZARDS (To be co		,	I 611 51. 5			
	mmable		□ Harmful	to breathe	☐ Harmful by Skin Con	itact		
□ ver	ity process r	nazards have bee	en reviewed					
C. PE	RSONAL PR	OTECTIVE EQUIP	PMENT (Chec	k all additional equipm	ent that is required)			
o Tyv	ek Suit		o Hearing	Protection	o H2S Monitor		o Flash Hoo	od
o Rai	in Gear		 Goggles 		o Safety Harness & Li	fe Line	o Life Vest	
o Che	emical Resis	tant Gloves	o Face shi	eld	o Tripod ER Escape U	nit	 Supplied 	Air Respirator
	bber Boots		o Organic	Vapor Respirator	o Fall Protection Equi	pment	 Dust Resp 	oirator
o Otl	ner:							
D. CI	HECK LIST (C	heck what has b	een complete	ed)				
	nt Job Site V		•	Il Isolation Completed	Line Identified		o Equipmor	at Water Flushed
	uipment Der			and locked out	Equipment Identifie	h.d		nt Water Flushed nt Inert Gas Purged
	nts Opened		Blinds in		Electrical Equipment			SA Completed
	nosphere Te			l Equipment Still Live	Equipment Still Live		0	57 Completed
Other	•]qp	·		
E. PR	ECAUTIONS	(Check what mu	ust be comple	eted PRIOR to commen	cing work)		_	
	ver Sewers			ing Inspection Done	 Charged Hose/Area 		1	cation Device(s)
	Mover (Gro		o Fire Exti		Covered Cable Trays		o Fire Watch	
	rricade/Sign:	S	o Fire Resi	stant Blanket	o Continuous Air Mor	nitoring		
o Oth		a Watch Individu	al and Start t	ime (30 min after hot w	varle):			
		nplete (signature		iiile (50 iiilii aitei iiot w	iork).			
0 1110	c water cor	inpicte (signature	ana timej.					
F. HA	ZARD ANAL	LYSIS (add addition	onal informat	ion to form as necessa	ry)			
	Job Steps			Potential Hazards		Hazard C	ontrols	
1.								
2.								
3.								
4.								
I VERI	IFY THAT TH	E ABOVE CHECK	LIST "D" HAS	BEEN COMPLETED, ALI	OTHER CONDITIONS ("E	3", "C", "E",	"F") ARE UND	ERSTOOD AND WHEN
		SAFE FOR WOR			,			
Name	e:		Signature:		Date:		Time:	

THIS IS THE LAST PAGE OF THIS DOCUMENT

If you have any questions, please contact one of the following individuals by email or phone.

Name: Mr. David Wonderly
Title: Client Project Manager

Region: West

Email: <u>DWonderly@montrose-env.com</u>

Phone: (714) 279-6777

Name: Mr. Matt McCune

Title: Regional Vice President

Region: West

Email: <u>MMccune@montrose-env.com</u>

Phone: (714) 279-6777

